All-digital interface ASIC for a QCM-based electronic nose

Department of Electronics and Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

Received 15 October 2003; received in revised form 15 October 2003; accepted 23 February 2004

Abstract

An all-digital interface, application specific integrated circuit (ASIC) has been developed for the control and data sampling of a quartz crystal microbalance (QCM)-based electronic nose. The ASIC is capable of measuring QCM resonant frequency between 0 and 11 MHz with a resolution of 1 Hz and ±1 Hz precision. The ASIC has been used to obtain measurements from polymer coated QCM sensors, in conjunction with polymer/carbon-black coated micro-resistance (µR) sensors, in the detection of primary alcohols. A full system-on-a-chip (SoC) electronic nose, currently under test, which supports arrays of eight QCM and eight µR sensors along with on-chip processing capability, is also described.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Quartz crystal microbalance (QCM); Micro-resistor; Electronic nose; Application specific integrated circuit (ASIC); Frequency measurement; System-on-a-chip (SoC)

1. Introduction

Quartz crystal microbalance (QCM) sensors have been successfully utilised in a range of electronic nose systems [1]. A QCM sensor consists of a quartz crystal, coated with an analyte-sensitive polymer. The analyte is adsorbed on contact onto the polymer coating’s surface, increasing the mass of the QCM sensor and hence resulting in a change in resonant frequency. A QCM sensor coated with a given polymer is multi-specific, i.e. it responds to multiple analytes, hence QCM-based electronic nose systems make use of an array of sensors, each using a distinct sensor coating.

A range of different interface circuit designs has been used with QCM sensors. Some use the QCM as the resonant element in a digital logic-gate based oscillator circuit, the resulting oscillation frequency being measured by either a digital frequency counter implemented in a Field-Programmable Gate-Array (FPGAs) [2,3], or a frequency-to-voltage converter driving an analog-to-digital PC data acquisition card [4,5]. Use of a more sophisticated oscillator design, formed from operational amplifiers and a voltage-controlled oscillator (VCO), permits the loading effect when the sensor is immersed in a liquid analyte to be compensated for, and thus may be used in a QCM-based electronic tongue [6]. However, in the case of an electronic nose measurement of resonant frequency alone is sufficient. The electronic nose system developed at the University of Glasgow uses QCM and micro-resistor (µR) sensor pairs, which have been shown [4,5] to require a significantly reduced number of different coating materials in comparison to systems based on a single sensor type.

All of the existing QCM-based electronic nose interface systems are relatively bulky, due to the use of numerous discrete electronic components. Additionally those based on FPGA technology will also tend to draw relatively high levels of current from the power supply. In order to overcome these limitations a QCM sensor interface application specific inte...

Fig. 1. A graphical representation of the frequency measurement method that enables 10 samples a second with 1 Hz resolution.

Fig. 2. QCM interface ASIC block diagram.

Fig. 3. A schematic circuit of the data acquisition system.

2. Frequency measurement method

The interface ASIC was required to measure QCM resonant frequency to a resolution of 1 Hz, with 10 frequency measurements per second. The conventional digital frequency measurement method, which uses a counter whose input is gated for a fixed measurement period, would require 10 counters for a single sensor to achieve the required 1 Hz resolution. Clearly this approach would need a large amount of silicon area. Hence, an alternative all-digital frequency measurement method was developed.

The QCM forms the resonant element in a CMOS oscillator, whose output increments a digital counter. The counter’s value rolls over to zero after 11×10^6 counts. The counter’s value is sampled every 100 ms, and the 11 most recent counter samples stored in a first in, first out (FIFO) memory. We label these S_0 to S_{10}, with S_0 being the most recently acquired. The input frequency, f_n, measured over a period of 1 s to achieve the required 1 Hz resolution, is then obtained as follows:

If $S_n \geq S_{n-10}$ then $f_n = S_n - S_{n-10}$
else $f_n = S_n - S_{n-10} + 11 \times 10^6$

The basic operation is illustrated in Fig. 1. In Fig. 1a the counter value rises monotonically, hence the frequency is simply the increase in the counter’s value over the 1-s measurement period, which is the difference of the two samples. In Fig. 1b the counter rolls over to zero in between the two samples of its value being taken, and thus 11×10^6 must be subtracted from the difference to take account of this fact. Thus, a new frequency measurement is made every 100 ms. Figs. 2 and 3 illustrate the frequency measurement method’s practical implementation in hardware.

This method achieves the required 1 Hz resolution, with a precision of 1 Hz, this being determined by the interval between the samples being used for the add/subtract operation outlined above, in this case 1 s. An increase in this interval will yield a proportional increase in resolution and precision. The upper bound on the frequency which may be measured is equal to the maximum value of the counter, in this case 11×10^6 counts/s, or an input frequency in excess of this value would cause the counter to roll over twice in one measurement period, producing erroneous data. The rate at which the counter value is sampled (in this case 10 samples/s) determines the maximum rate at which updated frequency measurements may be generated.

3. ASIC construction

The QCM interface ASIC interface is fabricated using Austria Mikro Systems’ (AMS) “CUQ” 0.6 μm two-metal
Fig. 4. Electronic nose QCM interface ASIC. The ASIC is fabricated in a 0.6 μm, two-metal process, and is 3.8 mm × 2.5 mm in size. The smaller block to the right is the counter, whilst the larger block to the left implements the buffering and adder/subtractor functionality for determining QCM resonant frequency from the counter’s output. The oscillator used with the QCM sensor is located within the pad ring at top right. A photo-micrograph of the frequency counter ASIC.

mixed-signal CMOS process, via the Europractice multiproduct wafer service. The digital design was specified in Verilog, simulated via the Synopsys VCS simulator and synthesised using Synopsys Design Compiler software. Cadence Silicon Ensemble was used to place-and-route each of the two digital blocks and Cadence Virtuoso was used to facilitate final chip assembly.

The chip consists of three main functional units (Figs. 2 and 4). Firstly, a CMOS oscillator (a standard AMS library component located in the padring) to which the QCM sensor is connected. The second component is the counter block, whose value is incremented by the QCM oscillator. The counter block generates a 24-bit sample output, whose value is updated every 100 ms. This output feeds into the output block, which stores the 11 most recent counter value samples in a FIFO (Fig. 3), from which it calculates the QCM resonant frequency using the method described above. The output block’s 24-bit output is made available externally along with a “data ready” signal and is sent to an 8255 input/output card located in a personal computer (PC) to provide data acquisition and logging.

4. Experimental work

The ASIC has been tested using a 10 MHz QCM sensor within an electronic nose system (Fig. 5), in conjunction with a micro-resistance (μR) sensor, comprising interdigitated finger electrodes. Both sensors are coated with poly(ethylene-co-vinylacetate) (PE-co-VA), with carbon black deposited in the polymer matrix in the case of the μR sensor [7].

The electronic nose system has been used to produce headspace analysis of alcohol vapours, \(\text{C}_n\overline{\text{H}}_{2n+1}\text{OH} \), where \(n = 1–8 \) and 10. Plots of the ratio of the response from the PE-co-VA coated QCM and the μR sensors, \(S_{fr} \), versus relative molecular mass (RMM) and alcohol liquid density (Fig. 6) show a linear relationship for alcohols where \(n > 2 \), despite

Fig. 5. Electronic nose experimental apparatus consisting of an infusion/withdrawal pumping system, a detector flow cell, detector electronics interface and a controlling personal computer. Analyte gases are introduced from a headspace sample bottle, and passed repeatedly through the sensor flow cell by the pumping system.
a very non-linear response for Δf and ΔR produced by the respective sensors (inset).

As the QCM response is proportional to a change in mass, and the μR response is proportional to a change in volume, S_{fr} can be defined as [4,5]:

$$S_{fr} = \frac{\Delta f / f_c}{\Delta R / R_0} \propto \frac{\Delta m}{\Delta V} \propto \rho_{A}$$

where Δf and ΔR are the frequency and resistance changes of the respective sensors; f_c and R_0 are, respectively, the QCM resonant frequency change upon polymer deposition and the baseline resistance value of the μR sensor, Δm and ΔV are the mass and volume change of the polymer deposited on the QCM and ρ_{A} is the density of the adsorbed analyte.

Also,

Fig. 6. S_{fr} vs. RMM and alcohol liquid density calculated using ΔR and Δf (inset) upon the introduction of primary alcohols ($C_nH_{2n+1}OH, \ n = 1–8$ and 10) to PE-co-VA coated QCM and μR sensors. A linear relationship is seen for both the RMM (solid line) and liquid density (dashed line) for alcohols where $n > 2$.

Fig. 7. S_{fr} for 12 repeat introductions of approximately 800 ppm (●) and 1600 ppm (△) of methanol to a pair of PE-co-VA sensors. The means (solid lines a and b) are plotted for each concentration. Upon removal of the outlier (c) using Dixon’s Q-test [8], the mean of the 800 ppm measurements increases (dashed line d) to a value close to that of the 1600 ppm measurements. Inset, ΔR and Δf for the 12 repeated introductions.
where S is a gas/polymer sensitivity coefficient, k'' a geometric constant related to the μR sensor electrodes, ρ_p the polymer density and RMM_A the relative molecular mass of the analyte. Therefore, S_{fr} should be proportional to the analyte density and RMM, respectively.

Repeated measurement of methanol ($n = 1$) vapour at concentrations of approximately 800 and 1600 ppm (Fig. 7) reveals that S_{fr} is independent of concentration change, in contrast to Δf and ΔR (inset). This concentration independence, allied to the linear properties of S_{fr} when detecting alcohols suggest that this system could be useful when designing electronic nose systems based on arrays of sensors for the detection of analyte gases with similar conformations.

5. System-on-a-chip electronic nose

Following the successful development and experimental evaluation of the QCM sensor frequency measurement chip a second ASIC capable of supporting an array of QCM and...
potentiometric (µR) sensor pairs was developed. This implements a full system-on-a-chip electronic nose. It provides interfaces for an array of eight QCM sensors, and eight µR sensors along with an on-chip microprocessor, as described in Fig. 8. Each QCM sensor is connected to an on-chip oscillator and frequency counter, these being formed from IP, which is re-used from the chip described above. The µR sensor array is connected to on-chip analog multiplexers, which permits any of the eight sensors to be selected as the feedback element in an inverting op-amp circuit, whose output is fed to a 10-bit analog-to-digital converter. Data acquisition is controlled by an on-chip 6805 embedded processor. This is in-system programmable and has a 2K SRAM block of program memory. An 8-bit on-chip bus permits the processor to acquire measurements from the sensor interfaces, as well as facilitating µR sensor selection and the initiation of, and reading results from, A-to-D conversion. An on-chip serial interface provides a connection point to a PC or other device for data logging. The sensors and external interface are implemented as addressable peripherals on the bus. Figs. 8 and 9 depict the SoC electronic nose chip.

Acknowledgements

We wish to thank Cathy Wyse for additional work on this project. This research is supported by the UK Engineering and Physical Sciences Research Council.

References

Biographies

James M. Beeley received a BEng (Honors) degree from the University of Glasgow in 1997. He has recently submitted his doctoral thesis, “Design and Construction of a Distributed Crossbar Switch Hypertext Parallel Computer”. His current research interest is in designing custom ASIC interface electronics for electronic nose systems.

Chris Mills received a BSc in Chemical Science from the University of Salford and, in 2000, a PhD from the University of Wales, Bangor, for studies on the electronic properties of semiconducting polymers. He then studied polymer-based electronic nose technology, as a Postdoctoral Researcher at the University of Glasgow, until 2003 and is currently a Ramon i Cajal Postdoctoral Researcher at the Barcelona Science Park working in the field of polymer-based nanotechnology.

Paul A. Hammond received the BEng degree from the University of Cambridge in 1999. Since then he has worked in industry as a CMOS analog circuit designer. He is currently pursuing the PhD degree at the University of Glasgow. He is particularly interested in the use of system-on-chip techniques in sensing applications.

Andre Glidle has BSc (Exeter, 1984) and PhD (Exeter, 1988) degrees and is a CChem and MRSC. He has developed a number of analytical methods in the fields of electrochemistry, physical chemistry, materials science and biotechnologies together with various methods for the specific immobilisation of chemical or biological motifs on sensor surfaces. He is a PDRA in the Bioelectronics Group at the University of Glasgow, UK.

Jonathan M. Cooper, FIoP, FIEEE, FRSE is a Professor of Bioelectronics in the Department of Electronic and Electrical Engineering at the University of Glasgow. He was a member of the DIT-Foresight Lab-on-a-Chip (LOAC) Consortium and is now a principal applicant in the UK’s Interdisciplinary Research Collaboration (IRC) in Biomicrotechnology. He is on the Editorial Board of Biosensors and Bioelectronics, and the IEEE Trans. in Biological Nanoscience, as well as being Editor in Chief IEEE Proc. in Biomicrotechnology. He has around 100 publications in peer-reviewed journals. His current research interests lie in medical diagnostics, biomicrotechnology and single cell analysis.

Lei Wang received the BSc degree in Information and Control Engineering and the PhD degree in Biomedical Engineering from Xi’an Jiaotong University, Xi’an, China, in 1995 and 2000, respectively. He is an MIEEE. After graduation, he was an Academic Visitor with the Department of Mechanical Engineering, University of Dundee, UK. In 2001, he joined the Department of Electronics and Electrical Engineering, University of Glasgow, UK, as a Postdoctoral Researcher. His research interests focus on physiological measurement, digital signal processing, and integrated circuit design.

David R.S. Cumming has BEng (Glasgow, 1989) and PhD (Cambridge, 1993) degrees and is a MIEEE. He has worked variously on microscopic device physics, RF characterization of novel devices, fabrication of diffractive optics for optical and sub-millimetre wave applications, diagnostic systems and microelectronic design. He is presently a Senior Lecturer and EPSRC Advanced Research Fellow in Electronics and Electrical Engineering at the University of Glasgow, UK, where he leads the Microsystem Technology Group.