This text is an introduction to modeling and analysis of dynamic systems, and to the
design of controllers for such systems. It is assumed that the student has a background
in calculus and college physics (mechanics, thermodynamics, and electrical circuits).
Any other required material in physics and mathematics (e.g., differential equations,
transforms, and matrices) is developed in the text.

Teaching, and therefore, writing a text in the area of dynamic systems and control
present a great challenge for several reasons. The systems engineer can be called on
to develop mathematical models for a variety of applications involving hydraulic,
pneumatic, thermal, mechanical, and electrical systems, and must be familiar with
the modeling techniques appropriate to each area. The challenge is to develop the
student’s ability to create a model that is sufficiently detailed to capture the dominant
dynamic characteristics of the system, yet simple enough to be useful for design
purposes.

Technological developments in the field have been rapid, as evidenced by the
increasing use of digital computers as controllers, and by the now widespread use of
computer packages such as MATLAB for analysis, simulation, and design. In addition
to hardware and software developments, the field has seen the rapid development
of analytical techniques collectively known as “modern” systems and control theory.
Matrix formulations using the state-space approach provide a good basis for develop-
ing general algorithms that are well suited for computer-aided design purposes.
On the other hand, the methods of “classical” systems theory are still widely used and
have significant advantages over the modern methods in many applications. Today’s
engineer must be familiar with the classical and modern approaches, and a balanced
treatment of these topics is needed.

Here an attempt to satisfy these needs has been made by introducing the required
concepts and methods in a balanced and gradual way. Examples from different fields
are given to show the student how to develop relatively low-order models that are
adequate for many applications. Most system-dynamics concepts can be explained
with first- and second-order models. Extensions to higher order models are gradually
introduced along with any required mathematical tools. In this way, students can
appreciate the need for such tools and can better understand their use. Because of
this approach, there are no separate chapters devoted to Laplace transform methods,
stability analysis, nonlinear systems, or state-space methods. Instead, students are led
to apply any of these methods whenever appropriate.

MATLAB

Readers familiar with the first edition will notice a great many additions and deletions,
as well as a substantial rearrangement of the material. This was done because of an
increased interest in modeling and because of the now widespread use of MATLAB.

This text uses MATLAB to illustrate how modern computer tools can be applied
in dynamic systems and control because surveys have shown that MATLAB is the
most widely used computer package in such courses. However, it is not necessary
to cover MATLAB in order to use the text. All MATLAB material has been placed in separate sections at the end of each chapter. If MATLAB is not used in the course, these sections can be skipped without affecting the students’ understanding of the rest of the material.

An innovative feature of the text is the coverage of sampled-data system analysis and digital control without the use of the z-transform. This approach uses the capabilities of MATLAB to avoid the time-consuming theoretical development of the z-transform and the derivation of pulse transfer functions for systems containing a zero-order hold. Students thus become comfortable with the analysis of sampled-data systems and digital control faster and easier than was formerly possible.

Chapter Structure

There are eleven chapters. The first six deal with dynamic systems; the last five cover control systems.

Each chapter has a similar structure designed to maximize flexibility of use. Each chapter has some optional material that can be omitted without impeding understanding of the subsequent chapters. All optional material has been placed in sections near the end of the chapter. This optional material includes:

1. All material dealing with MATLAB.
4. Three case studies in Chapter 4.
5. Curve fitting and regression in Chapter 5.
6. Analog controller hardware in Chapter 7.
10. Linear-quadratic regulator design in Chapter 11.

Design Applications

Since the publication of the first edition, changing accreditation criteria has resulted in increased demand for design coverage. A determined effort has been made throughout the text to justify and to illustrate the analytical methods in terms of their practical applications. Book length restrictions always prevent the treatment of design problems at the level of fine detail needed in practice, and some design considerations such as economics and reliability are difficult to treat within the scope of this study. Nevertheless, the discussion and examples should give students as much of a feel for the design process as is possible in an academic environment. To this end, a number of case studies and extended examples have been added. In addition, each chapter has a set of problems that have a design emphasis. Many of these can be done with a computer package such as MATLAB.

Chapter Problems

The number of problems at the end of each chapter has been greatly increased, and they are keyed to the appropriate section of the chapter. At the end of each
problem set there are a number of problems designated as Design Problems or Computer Problems. Many of the design problems are best done with a computer. The computer problems can be done with MATLAB or with another package.

Courses in Dynamic Systems and Control

It is my view that an undergraduate dynamic systems course should introduce the terminology and the basic principles of modeling and analysis, with emphasis on applications in vibrations and elementary feedback control systems. A general understanding of these topics is important even for graduates who will not be actively involved in designing dynamic systems, because such systems are encountered in many applications and their characteristics should be understood. This introduction should also prepare students for continuing their education in the vibrations or controls area, either with self-study by reading the literature or attending short courses or graduate school.

There is great variability among schools in how dynamic systems and control are handled in the curriculum, and this text has been designed to accommodate a number of variations. The only chapters that must be covered are Chapters 1 through 4. These chapters cover the basic modeling and analysis topics. Chapters 5 through 11 can be selected to provide the desired emphasis.

The national trend is toward requiring a dynamic systems course that includes some vibration and an introduction to control systems. Chapters 1 through 7 are designed for such a course. At the author’s institution, the required junior course in dynamic systems covers the first seven chapters. No formal laboratory accompanies the course. However, if one is available, the text contains enough information on hardware to serve as a reference for the laboratory sessions. A senior elective course in control systems covers Chapters 8 through 11.

Some schools omit fluid and thermal systems from the dynamic systems course. If this is desired, Chapter 5 can be skipped without affecting understanding of the subsequent chapters. Students should have had elementary thermodynamics before covering the pneumatics material in this chapter, but previous exposure to fluid mechanics or heat transfer is not required.

Chapters 8 through 11 were designed to enable more extensive coverage of control systems in several ways. For example,

1. Coverage of Chapter 8 is recommended because it deals with the important practical topics of tuning, compensation, actuator saturation, reset wind-up, and digital control.
2. For treatment of classical design methods, cover Chapters 9 and 10. These deal with design applications of the root locus and frequency response plots.
3. For treatment of modern control methods based on state variable and matrix methods, cover Chapter 11. Note that Chapter 11 does not require coverage of Chapters 8, 9, or 10.

Acknowledgements

Successful creation of a textbook is a team effort, with the author only the most visible member. I would like to acknowledge the rest of the team. Three department chairmen at the University of Rhode Island provided consideration and encouragement throughout the writing of either the first or second edition. These are Professors Charles D. Nash, Jr., Thomas J. Kim, and Martin H. Sadd. Professors Frank M. White
and Richard C. Lessmann provided useful data and helpful discussions of fluid mechanics and heat transfer. I am indebted to several anonymous reviewers for their constructive criticism, suggestions, and enthusiasm. I especially wish to acknowledge and thank Professors Mark Nagurka, Tom Kurfess, and Kevin Craig for their enthusiasm and their two workshops on teaching dynamic systems and control. Interactions with them and other instructors at the workshops provided motivation for the second edition and some of the new material it contains.

I am also grateful to the late Cliff Robichaud of John Wiley and Sons, who initiated the second-edition project, and to the current editor, Joe Hayton, for their guidance, and for their patience when deadlines were missed.

Finally, I want to thank my wife, Mary Louise, and our children, Aileene, Bill, and Andrew, for their support and understanding through the writing of “yet another book.”

William J. Palm III
Contents

Preface

1. **Introduction** 1
 - Chapter Overview 1
 - 1.1 Systems 2
 - 1.2 Modeling, Analysis, and Control 4
 - 1.3 Newton’s Laws of Motion 8
 - 1.4 Energy Principles 16
 - 1.5 Useful Analysis Tools 22
 - 1.6 Matrix Algebra 28
 - 1.7 Introduction to MATLAB 32
 - 1.8 Summary 39
 - Problems 40

2. **Modeling and Analysis of Mechanical Systems** 45
 - Chapter Overview 45
 - 2.1 The Laplace Transform 46
 - 2.2 Response of First-Order Models 50
 - 2.3 Response of Higher-Order Models 60
 - 2.4 Pulse, Impulse, and Ramp Response 83
 - 2.5 Plane Motion Examples 90
 - 2.6 Case Study: Feasibility Study of a Mobile Robot Design 98
 - 2.7 Nonlinear Models and Linearization 104
 - 2.8 Numerical Methods for Differential Equations 116
 - 2.9 MATLAB and the Laplace Transform 137
 - 2.10 Summary 139
 - Problems 143

3. **Modeling of Electrical Systems** 151
 - Chapter Overview 151
 - 3.1 Electrical Circuit Models 152
 - 3.2 The Structure of Dynamic Models 159
 - 3.3 Transfer Functions and Block Diagrams 161
 - 3.4 Impedance 173
 - 3.5 Operational Amplifiers 176
 - 3.6 Electromechanical Systems 182
 - 3.7 Case Study: Design of Motion Control Systems 196
 - 3.8 State-Variable Models 204
 - 3.9 Linear Systems Analysis in MATLAB 214
 - 3.10 Summary 232
 - Problems 233
Contents

4. **Elasticity, Damping, and Mechanical Transformers**

<table>
<thead>
<tr>
<th>Chapter Overview</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Elastic Elements</td>
<td>246</td>
</tr>
<tr>
<td>4.2 Damping Elements</td>
<td>262</td>
</tr>
<tr>
<td>4.3 Mechanical Transformers</td>
<td>272</td>
</tr>
<tr>
<td>4.4 Predictors and Measures of Performance</td>
<td>285</td>
</tr>
<tr>
<td>4.5 Analysis of Higher-Order Models</td>
<td>299</td>
</tr>
<tr>
<td>4.6 Modes and System Response</td>
<td>305</td>
</tr>
<tr>
<td>4.7 Case Study: Component Selection for Motion Control</td>
<td>314</td>
</tr>
<tr>
<td>4.8 Case Study: Vehicle Suspension Design</td>
<td>324</td>
</tr>
<tr>
<td>4.9 Case Study: Modes and Aircraft Dynamics</td>
<td>331</td>
</tr>
<tr>
<td>4.10 Model Forms and Computer Analysis</td>
<td>334</td>
</tr>
<tr>
<td>4.11 Summary</td>
<td>348</td>
</tr>
<tr>
<td>Problems</td>
<td>349</td>
</tr>
</tbody>
</table>

5. **Fluid and Thermal Systems**

<table>
<thead>
<tr>
<th>Chapter Overview</th>
<th>358</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Hydraulics and Liquid-Level Systems</td>
<td>359</td>
</tr>
<tr>
<td>5.2 Hydraulic Devices</td>
<td>370</td>
</tr>
<tr>
<td>5.3 Pneumatic Elements</td>
<td>377</td>
</tr>
<tr>
<td>5.4 Thermal Systems</td>
<td>386</td>
</tr>
<tr>
<td>5.5 Developing Models from Data</td>
<td>395</td>
</tr>
<tr>
<td>5.6 Regression Analysis with MATLAB</td>
<td>403</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>410</td>
</tr>
<tr>
<td>Problems</td>
<td>413</td>
</tr>
</tbody>
</table>

6. **Frequency Response and Vibration**

<table>
<thead>
<tr>
<th>Chapter Overview</th>
<th>421</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Frequency Response of First-Order Systems</td>
<td>422</td>
</tr>
<tr>
<td>6.2 Frequency Response of Second-Order Systems</td>
<td>439</td>
</tr>
<tr>
<td>6.3 Bandwidth</td>
<td>449</td>
</tr>
<tr>
<td>6.4 Frequency Response Case Studies</td>
<td>452</td>
</tr>
<tr>
<td>6.5 Vibration Isolation</td>
<td>458</td>
</tr>
<tr>
<td>6.6 Vibration Absorption</td>
<td>469</td>
</tr>
<tr>
<td>6.7 Response to General Periodic Inputs</td>
<td>474</td>
</tr>
<tr>
<td>6.8 Frequency Response Analysis Using MATLAB</td>
<td>478</td>
</tr>
<tr>
<td>6.9 Summary</td>
<td>480</td>
</tr>
<tr>
<td>Problems</td>
<td>482</td>
</tr>
</tbody>
</table>

7. **Introduction to Feedback Control Systems**

<table>
<thead>
<tr>
<th>Chapter Overview</th>
<th>488</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Feedback Control: Concepts, History, and Applications</td>
<td>489</td>
</tr>
<tr>
<td>7.2 Block Diagram Description of Control Systems</td>
<td>493</td>
</tr>
<tr>
<td>7.3 Transducers and Error Detectors</td>
<td>501</td>
</tr>
<tr>
<td>7.4 Actuators</td>
<td>505</td>
</tr>
<tr>
<td>7.5 Control Logic</td>
<td>510</td>
</tr>
<tr>
<td>7.6 Control of a First-Order Plant</td>
<td>513</td>
</tr>
<tr>
<td>7.7 Control of a Second-Order Plant</td>
<td>525</td>
</tr>
</tbody>
</table>
Contents

7.8 Electronic Controllers 535
7.9 Pneumatic Controllers 542
7.10 Hydraulic Controllers 546
7.11 Block Diagram Algebra Using MATLAB 550
7.12 Summary 552
Problems 553

8. Control System Design: Tuning, Compensation, and Digital Control 563
8.1 Performance Indices and Controller Tuning 565
8.2 Sensitivity and Robust Controller Design 574
8.3 Parasitic Modes and Robust Controller Design 579
8.4 Command Compensation 584
8.5 Disturbance Compensation 592
8.6 Feedback Compensation and Cascade Control 595
8.7 Reset Wind-up and Actuator Saturation 606
8.8 Discrete-time Models for Digital Control 617
8.9 Sampling and Sampled-data Systems 622
8.10 Digital Control Algorithms 628
8.11 Digital Controller Analysis in MATLAB 637
8.12 Summary 642
Problems 643

9. The Root Locus Method 655
9.1 The Root Locus Concept 656
9.2 Plotting Guides 661
9.3 The Complementary Root Locus 676
9.4 Applications 682
9.5 Root Locus Plotting With MATLAB 690
9.6 Digital Controller Design With the Root Locus 695
9.7 Summary 705
Problems 706

10. Applications of Graphical Methods to System Design 715
10.1 System Design With Open-Loop Frequency Response Plots 716
10.2 Series Compensation and PID Control 721
10.3 Static Error Coefficients 723
10.4 Lead and Lag Compensators 724
10.5 Root Locus Design of Compensators 727
10.6 Bode Design of Compensators 734
10.7 Lag-Lead Compensation 739
10.8 Systems With Dead-Time Elements 742
10.9 Frequency Response Design Using MATLAB 751
10.10 Summary 754
Problems 754
11. State-Variable Methods for Control System Design 758

Chapter Overview 7.58
11.1 Examples of State-Variable Models 759
11.2 Vector Representations of the System Modes 766
11.3 Controllability and Observability 777
11.4 Vector Formulation of State-Variable Feedback 787
11.5 SISO Systems and State-Variable Feedback 799
11.6 State Vector Observers 803
11.7 Linear-Quadratic Regulator Design 809
11.8 State-Variable Design Methods With MATLAB 821
11.9 Summary 833
Problems 834

Appendix A: The Fourier Series 845

Appendix B: Typical Units and Physical Constants 847

Index 851