Preface

When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

This edition is the most comprehensive revision of *Digital Image Processing* since the book first appeared in 1977. As the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 edition by Gonzalez and Woods, the present edition was prepared with students and instructors in mind. Thus, the principal objectives of the book continue to be to provide an introduction to basic concepts and methodologies for digital image processing, and to develop a foundation that can be used as the basis for further study and research in this field. To achieve these objectives, we again focused on material that we believe is fundamental and has a scope of application that is not limited to the solution of specialized problems. The mathematical complexity of the book remains at a level well within the grasp of college seniors and first-year graduate students who have introductory preparation in mathematical analysis, vectors, matrices, probability, statistics, and rudimentary computer programming.

The present edition was influenced significantly by a recent market survey conducted by Prentice Hall. The major findings of this survey were:

1. A need for more motivation in the introductory chapter regarding the spectrum of applications of digital image processing.
2. A simplification and shortening of material in the early chapters in order to “get to the subject matter” as quickly as possible.
3. A more intuitive presentation in some areas, such as image transforms and image restoration.
4. Individual chapter coverage of color image processing, wavelets, and image morphology.
5. An increase in the breadth of problems at the end of each chapter.

The reorganization that resulted in this edition is our attempt at providing a reasonable degree of balance between rigor in the presentation, the findings of the market survey, and suggestions made by students, readers, and colleagues since the last edition of the book. The major changes made in the book are as follows.

Chapter 1 was rewritten completely. The main focus of the current treatment is on examples of areas that use digital image processing. While far from exhaustive, the examples shown will leave little doubt in the reader’s mind regarding the breadth of application of digital image processing methodologies. Chapter 2 is totally new also. The focus of the presentation in this chapter is on how digital images are generated, and on the closely related concepts of
sampling, aliasing, Moiré patterns, and image zooming and shrinking. The new material and the manner in which these two chapters were reorganized address directly the first two findings in the market survey mentioned above.

Chapters 3 through 6 in the current edition cover the same concepts as Chapters 3 through 5 in the previous edition, but the scope is expanded and the presentation is totally different. In the previous edition, Chapter 3 was devoted exclusively to image transforms. One of the major changes in the book is that image transforms are now introduced when they are needed. This allowed us to begin discussion of image processing techniques much earlier than before, further addressing the second finding of the market survey. Chapters 3 and 4 in the current edition deal with image enhancement, as opposed to a single chapter (Chapter 4) in the previous edition. The new organization of this material does not imply that image enhancement is more important than other areas. Rather, we used it as an avenue to introduce spatial methods for image processing (Chapter 3), as well as the Fourier transform, the frequency domain, and image filtering (Chapter 4). Our purpose for introducing these concepts in the context of image enhancement (a subject particularly appealing to beginners) was to increase the level of intuitiveness in the presentation, thus addressing partially the third major finding in the marketing survey. This organization also gives instructors flexibility in the amount of frequency-domain material they wish to cover.

Chapter 5 also was rewritten completely in a more intuitive manner. The coverage of this topic in earlier editions of the book was based on matrix theory. Although unified and elegant, this type of presentation is difficult to follow, particularly by undergraduates. The new presentation covers essentially the same ground, but the discussion does not rely on matrix theory and is much easier to understand, due in part to numerous new examples. The price paid for this newly gained simplicity is the loss of a unified approach, in the sense that in the earlier treatment a number of restoration results could be derived from one basic formulation. On balance, however, we believe that readers (especially beginners) will find the new treatment much more appealing and easier to follow. Also, as indicated below, the old material is stored in the book Web site for easy access by individuals preferring to follow a matrix-theory formulation.

Chapter 6 dealing with color image processing is new. Interest in this area has increased significantly in the past few years as a result of growth in the use of digital images for Internet applications. Our treatment of this topic represents a significant expansion of the material from previous editions. Similarly Chapter 7, dealing with wavelets, is new. In addition to a number of signal processing applications, interest in this area is motivated by the need for more sophisticated methods for image compression, a topic that in turn is motivated by an increase in the number of images transmitted over the Internet or stored in Web servers. Chapter 8 dealing with image compression was updated to include new compression methods and standards, but its fundamental structure remains the same as in the previous edition. Several image transforms, previously covered in Chapter 3 and whose principal use is compression, were moved to this chapter.
Chapter 9, dealing with image morphology, is new. It is based on a significant expansion of the material previously included as a section in the chapter on image representation and description. Chapter 10, dealing with image segmentation, has the same basic structure as before, but numerous new examples were included and a new section on segmentation by morphological watersheds was added. Chapter 11, dealing with image representation and description, was shortened slightly by the removal of the material now included in Chapter 9. New examples were added and the Hotelling transform (description by principal components), previously included in Chapter 3, was moved to this chapter. Chapter 12 dealing with object recognition was shortened by the removal of topics dealing with knowledge-based image analysis, a topic now covered in considerable detail in a number of books which we reference in Chapters 1 and 12. Experience since the last edition of *Digital Image Processing* indicates that the new, shortened coverage of object recognition is a logical place at which to conclude the book.

Although the book is totally self-contained, we have established a companion web site (see inside front cover) designed to provide support to users of the book. For students following a formal course of study or individuals embarked on a program of self study, the site contains a number of tutorial reviews on background material such as probability, statistics, vectors, and matrices, prepared at a basic level and written using the same notation as in the book. Detailed solutions to many of the exercises in the book also are provided. For instruction, the site contains suggested teaching outlines, classroom presentation materials, laboratory experiments, and various image databases (including most images from the book). In addition, part of the material removed from the previous edition is stored in the Web site for easy download and classroom use, at the discretion of the instructor. A downloadable instructor’s manual containing sample curricula, solutions to sample laboratory experiments, and solutions to all problems in the book is available to instructors who have adopted the book for classroom use.

This edition of *Digital Image Processing* is a reflection of the significant progress that has been made in this field in just the past decade. As is usual in a project such as this, progress continues after work on the manuscript stops. One of the reasons earlier versions of this book have been so well accepted throughout the world is their emphasis on fundamental concepts, an approach that, among other things, attempts to provide a measure of constancy in a rapidly-evolving body of knowledge. We have tried to observe that same principle in preparing this edition of the book.

R.C.G.
R.E.W.
Contents

Preface xv
Acknowledgements xviii
About the Authors xix

1 Introduction 15
1.1 What Is Digital Image Processing? 15
1.2 The Origins of Digital Image Processing 17
1.3 Examples of Fields that Use Digital Image Processing 21
 1.3.1 Gamma-Ray Imaging 22
 1.3.2 X-ray Imaging 23
 1.3.3 Imaging in the Ultraviolet Band 25
 1.3.4 Imaging in the Visible and Infrared Bands 26
 1.3.5 Imaging in the Microwave Band 32
 1.3.6 Imaging in the Radio Band 34
 1.3.7 Examples in which Other Imaging Modalities Are Used 34
1.4 Fundamental Steps in Digital Image Processing 39
1.5 Components of an Image Processing System 42
Summary 44
References and Further Reading 45

2 Digital Image Fundamentals 34
2.1 Elements of Visual Perception 34
 2.1.1 Structure of the Human Eye 35
 2.1.2 Image Formation in the Eye 37
 2.1.3 Brightness Adaptation and Discrimination 38
2.2 Light and the Electromagnetic Spectrum 42
2.3 Image Sensing and Acquisition 45
 2.3.1 Image Acquisition Using a Single Sensor 47
 2.3.2 Image Acquisition Using Sensor Strips 48
 2.3.3 Image Acquisition Using Sensor Arrays 49
 2.3.4 A Simple Image Formation Model 50
2.4 Image Sampling and Quantization 52
 2.4.1 Basic Concepts in Sampling and Quantization 52
 2.4.2 Representing Digital Images 54
 2.4.3 Spatial and Gray-Level Resolution 57
 2.4.4 Aliasing and Moiré Patterns 62
 2.4.5 Zooming and Shrinking Digital Images 64
2.5 Some Basic Relationships Between Pixels 66
2.5.1 Neighbors of a Pixel 66
2.5.2 Adjacency, Connectivity, Regions, and Boundaries 66
2.5.3 Distance Measures 68
2.5.4 Image Operations on a Pixel Basis 69

2.6 Linear and Nonlinear Operations 70
Summary 70
References and Further Reading 70
Problems 71

3 Image Enhancement in the Spatial Domain 75
3.1 Background 76
3.2 Some Basic Gray Level Transformations 78
3.2.1 Image Negatives 78
3.2.2 Log Transformations 79
3.2.3 Power-Law Transformations 80
3.2.4 Piecewise-Linear Transformation Functions 85
3.3 Histogram Processing 88
3.3.1 Histogram Equalization 91
3.3.2 Histogram Matching (Specification) 94
3.3.3 Local Enhancement 103
3.3.4 Use of Histogram Statistics for Image Enhancement 103
3.4 Enhancement Using Arithmetic/Logic Operations 108
3.4.1 Image Subtraction 110
3.4.2 Image Averaging 112
3.5 Basics of Spatial Filtering 116
3.6 Smoothing Spatial Filters 119
3.6.1 Smoothing Linear Filters 119
3.6.2 Order-Statistics Filters 123
3.7 Sharpening Spatial Filters 125
3.7.1 Foundation 125
3.7.2 Use of Second Derivatives for Enhancement—The Laplacian 128
3.7.3 Use of First Derivatives for Enhancement—The Gradient 134
3.8 Combining Spatial Enhancement Methods 137
Summary 141
References and Further Reading 142
Problems 142

4 Image Enhancement in the Frequency Domain 147
4.1 Background 148
4.2 Introduction to the Fourier Transform and the Frequency Domain
 4.2.1 The One-Dimensional Fourier Transform and its Inverse 150
 4.2.2 The Two-Dimensional DFT and Its Inverse 154
 4.2.3 Filtering in the Frequency Domain 156
 4.2.4 Correspondence between Filtering in the Spatial and Frequency Domains 161

4.3 Smoothing Frequency-Domain Filters 167
 4.3.1 Ideal Lowpass Filters 167
 4.3.2 Butterworth Lowpass Filters 173
 4.3.3 Gaussian Lowpass Filters 175
 4.3.4 Additional Examples of Lowpass Filtering 178

4.4 Sharpening Frequency Domain Filters 180
 4.4.1 Ideal Highpass Filters 182
 4.4.2 Butterworth Highpass Filters 183
 4.4.3 Gaussian Highpass Filters 184
 4.4.4 The Laplacian in the Frequency Domain 185
 4.4.5 Unsharp Masking, High-Boost Filtering, and High-Frequency Emphasis Filtering 187

4.5 Homomorphic Filtering 191

4.6 Implementation 194
 4.6.1 Some Additional Properties of the 2-D Fourier Transform 194
 4.6.2 Computing the Inverse Fourier Transform Using a Forward Transform Algorithm 198
 4.6.3 More on Periodicity: the Need for Padding 199
 4.6.4 The Convolution and Correlation Theorems 205
 4.6.5 Summary of Properties of the 2-D Fourier Transform 208
 4.6.6 The Fast Fourier Transform 208
 4.6.7 Some Comments on Filter Design 213

Summary 214
References 214
Problems 215

5 Image Restoration 220

5.1 A Model of the Image Degradation/Restoration Process 221

5.2 Noise Models 222
 5.2.1 Spatial and Frequency Properties of Noise 222
 5.2.2 Some Important Noise Probability Density Functions 222
 5.2.3 Periodic Noise 227
 5.2.4 Estimation of Noise Parameters 227

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 230
 5.3.1 Mean Filters 231
 5.3.2 Order-Statistics Filters 233
 5.3.3 Adaptive Filters 237
8.4.2 LZW Coding 446
8.4.3 Bit-Plane Coding 448
8.4.4 Lossless Predictive Coding 456

8.5 **Lossy Compression** 459
8.5.1 Lossy Predictive Coding 459
8.5.2 Transform Coding 467
8.5.3 Wavelet Coding 486

8.6 **Image Compression Standards** 492
8.6.1 Binary Image Compression Standards 493
8.6.2 Continuous Tone Still Image Compression Standards 498
8.6.3 Video Compression Standards 510

Summary 513
References and Further Reading 513
Problems 514

9 **Morphological Image Processing** 519

9.1 **Preliminaries** 520
9.1.1 Some Basic Concepts from Set Theory 520
9.1.2 Logic Operations Involving Binary Images 522

9.2 **Dilation and Erosion** 523
9.2.1 Dilation 523
9.2.2 Erosion 525

9.3 **Opening and Closing** 528

9.4 **The Hit-or-Miss Transformation** 532

9.5 **Some Basic Morphological Algorithms** 534
9.5.1 Boundary Extraction 534
9.5.2 Region Filling 535
9.5.3 Extraction of Connected Components 536
9.5.4 Convex Hull 539
9.5.5 Thinning 541
9.5.6 Thickening 541
9.5.7 Skeletons 543
9.5.8 Pruning 545
9.5.9 Summary of Morphological Operations on Binary Images 547

9.6 **Extensions to Gray-Scale Images** 550
9.6.1 Dilation 550
9.6.2 Erosion 552
9.6.3 Opening and Closing 554
9.6.4 Some Applications of Gray-Scale Morphology 556

Summary 560
References and Further Reading 560
Problems 560
10 Image Segmentation 567

10.1 Detection of Discontinuities 568
- **10.1.1 Point Detection** 569
- **10.1.2 Line Detection** 570
- **10.1.3 Edge Detection** 572

10.2 Edge Linking and Boundary Detection 585
- **10.2.1 Local Processing** 585
- **10.2.2 Global Processing via the Hough Transform** 587
- **10.2.3 Global Processing via Graph-Theoretic Techniques** 591

10.3 Thresholding 595
- **10.3.1 Foundation** 595
- **10.3.2 The Role of Illumination** 596
- **10.3.3 Basic Global Thresholding** 598
- **10.3.4 Basic Adaptive Thresholding** 600
- **10.3.5 Optimal Global and Adaptive Thresholding** 602
- **10.3.6 Use of Boundary Characteristics for Histogram Improvement and Local Thresholding** 608
- **10.3.7 Thresholds Based on Several Variables** 611

10.4 Region-Based Segmentation 612
- **10.4.1 Basic Formulation** 612
- **10.4.2 Region Growing** 613
- **10.4.3 Region Splitting and Merging** 615

10.5 Segmentation by Morphological Watersheds 617
- **10.5.1 Basic Concepts** 617
- **10.5.2 Dam Construction** 620
- **10.5.3 Watershed Segmentation Algorithm** 622
- **10.5.4 The Use of Markers** 624

10.6 The Use of Motion in Segmentation 626
- **10.6.1 Spatial Techniques** 626
- **10.6.2 Frequency Domain Techniques** 630

Summary 634

References and Further Reading 634

Problems 636

11 Representation and Description 643

11.1 Representation 644
- **11.1.1 Chain Codes** 644
- **11.1.2 Polygonal Approximations** 646
- **11.1.3 Signatures** 648
- **11.1.4 Boundary Segments** 649
- **11.1.5 Skeletons** 650