DIGITAL IMAGE PROCESSING
DIGITAL IMAGE PROCESSING

PIKS Inside

Third Edition

WILLIAM K. PRATT
PixelSoft, Inc.
Los Altos, California

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2001 by John Wiley and Sons, Inc., New York. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.


This title is also available in print as ISBN 0-471-37407-5.

For more information about Wiley products, visit our web site at www.Wiley.com.
To my wife, Shelly
whose image needs no enhancement
CONTENTS

Preface xiii

Acknowledgments xvii

PART 1 CONTINUOUS IMAGE CHARACTERIZATION 1

1 Continuous Image Mathematical Characterization 3
   1.1 Image Representation, 3
   1.2 Two-Dimensional Systems, 5
   1.3 Two-Dimensional Fourier Transform, 10
   1.4 Image Stochastic Characterization, 15

2 Psychophysical Vision Properties 23
   2.1 Light Perception, 23
   2.2 Eye Physiology, 26
   2.3 Visual Phenomena, 29
   2.4 Monochrome Vision Model, 33
   2.5 Color Vision Model, 39

3 Photometry and Colorimetry 45
   3.1 Photometry, 45
   3.2 Color Matching, 49

vii
## CONTENTS

3.3 Colorimetry Concepts, 54  
3.4 Tristimulus Value Transformation, 61  
3.5 Color Spaces, 63  

**PART 2 DIGITAL IMAGE CHARACTERIZATION**  

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Image Sampling and Reconstruction</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Image Sampling and Reconstruction Concepts</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Image Sampling Systems</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Image Reconstruction Systems</td>
<td>110</td>
</tr>
</tbody>
</table>

**PART 3 DISCRETE TWO-DIMENSIONAL LINEAR PROCESSING**  

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Superposition and Convolution</td>
<td>161</td>
</tr>
<tr>
<td>7.1</td>
<td>Finite-Area Superposition and Convolution</td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>Sampled Image Superposition and Convolution</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>Circulant Superposition and Convolution</td>
<td>177</td>
</tr>
<tr>
<td>7.4</td>
<td>Superposition and Convolution Operator Relationships</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unitary Transforms</td>
<td>185</td>
</tr>
<tr>
<td>8.1</td>
<td>General Unitary Transforms</td>
<td>185</td>
</tr>
<tr>
<td>8.2</td>
<td>Fourier Transform</td>
<td>189</td>
</tr>
<tr>
<td>8.3</td>
<td>Cosine, Sine, and Hartley Transforms</td>
<td>195</td>
</tr>
<tr>
<td>8.4</td>
<td>Hadamard, Haar, and Daubechies Transforms</td>
<td>200</td>
</tr>
<tr>
<td>8.5</td>
<td>Karhunen–Loeve Transform</td>
<td>207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Linear Processing Techniques</td>
<td>213</td>
</tr>
<tr>
<td>9.1</td>
<td>Transform Domain Processing</td>
<td>213</td>
</tr>
<tr>
<td>9.2</td>
<td>Transform Domain Superposition</td>
<td>216</td>
</tr>
</tbody>
</table>
9.3 Fast Fourier Transform Convolution, 221
9.4 Fourier Transform Filtering, 229
9.5 Small Generating Kernel Convolution, 236

PART 4 IMAGE IMPROVEMENT 241

10 Image Enhancement 243
10.1 Contrast Manipulation, 243
10.2 Histogram Modification, 253
10.3 Noise Cleaning, 261
10.4 Edge Crispening, 278
10.5 Color Image Enhancement, 284
10.6 Multispectral Image Enhancement, 289

11 Image Restoration Models 297
11.1 General Image Restoration Models, 297
11.2 Optical Systems Models, 300
11.3 Photographic Process Models, 304
11.4 Discrete Image Restoration Models, 312

12 Point and Spatial Image Restoration Techniques 319
12.1 Sensor and Display Point Nonlinearity Correction, 319
12.2 Continuous Image Spatial Filtering Restoration, 325
12.3 Pseudoinverse Spatial Image Restoration, 335
12.4 SVD Pseudoinverse Spatial Image Restoration, 349
12.5 Statistical Estimation Spatial Image Restoration, 355
12.6 Constrained Image Restoration, 358
12.7 Blind Image Restoration, 363

13 Geometrical Image Modification 371
13.1 Translation, Minification, Magnification, and Rotation, 371
13.2 Spatial Warping, 382
13.3 Perspective Transformation, 386
13.4 Camera Imaging Model, 389
13.5 Geometrical Image Resampling, 393

PART 5 IMAGE ANALYSIS 399

14 Morphological Image Processing 401
14.1 Binary Image Connectivity, 401
14.2 Binary Image Hit or Miss Transformations, 404
14.3 Binary Image Shrinking, Thinning, Skeletonizing, and Thickening, 411
14.4 Binary Image Generalized Dilation and Erosion, 422
14.5 Binary Image Close and Open Operations, 433
14.6 Gray Scale Image Morphological Operations, 435

15 Edge Detection
15.1 Edge, Line, and Spot Models, 443
15.2 First-Order Derivative Edge Detection, 448
15.3 Second-Order Derivative Edge Detection, 469
15.4 Edge-Fitting Edge Detection, 482
15.5 Luminance Edge Detector Performance, 485
15.6 Color Edge Detection, 499
15.7 Line and Spot Detection, 499

16 Image Feature Extraction
16.1 Image Feature Evaluation, 509
16.2 Amplitude Features, 511
16.3 Transform Coefficient Features, 516
16.4 Texture Definition, 519
16.5 Visual Texture Discrimination, 521
16.6 Texture Features, 529

17 Image Segmentation
17.1 Amplitude Segmentation Methods, 552
17.2 Clustering Segmentation Methods, 560
17.3 Region Segmentation Methods, 562
17.4 Boundary Detection, 566
17.5 Texture Segmentation, 580
17.6 Segment Labeling, 581

18 Shape Analysis
18.1 Topological Attributes, 589
18.2 Distance, Perimeter, and Area Measurements, 591
18.3 Spatial Moments, 597
18.4 Shape Orientation Descriptors, 607
18.5 Fourier Descriptors, 609

19 Image Detection and Registration
19.1 Template Matching, 613
19.2 Matched Filtering of Continuous Images, 616
19.3 Matched Filtering of Discrete Images, 623
19.4 Image Registration, 625
PART 6  IMAGE PROCESSING SOFTWARE  641

20  PIKS Image Processing Software  643
  20.1 PIKS Functional Overview, 643
  20.2 PIKS Core Overview, 663

21  PIKS Image Processing Programming Exercises  673
  21.1 Program Generation Exercises, 674
  21.2 Image Manipulation Exercises, 675
  21.3 Colour Space Exercises, 676
  21.4 Region-of-Interest Exercises, 678
  21.5 Image Measurement Exercises, 679
  21.6 Quantization Exercises, 680
  21.7 Convolution Exercises, 681
  21.8 Unitary Transform Exercises, 682
  21.9 Linear Processing Exercises, 682
  21.10 Image Enhancement Exercises, 683
  21.11 Image Restoration Models Exercises, 685
  21.12 Image Restoration Exercises, 686
  21.13 Geometrical Image Modification Exercises, 687
  21.14 Morphological Image Processing Exercises, 687
  21.15 Edge Detection Exercises, 689
  21.16 Image Feature Extraction Exercises, 690
  21.17 Image Segmentation Exercises, 691
  21.18 Shape Analysis Exercises, 691
  21.19 Image Detection and Registration Exercises, 692

Appendix 1  Vector-Space Algebra Concepts  693

Appendix 2  Color Coordinate Conversion  709

Appendix 3  Image Error Measures  715

Bibliography  717

Index  723
PREFACE

In January 1978, I began the preface to the first edition of *Digital Image Processing* with the following statement:

The field of image processing has grown considerably during the past decade with the increased utilization of imagery in myriad applications coupled with improvements in the size, speed, and cost effectiveness of digital computers and related signal processing technologies. Image processing has found a significant role in scientific, industrial, space, and government applications.

In January 1991, in the preface to the second edition, I stated:

Thirteen years later as I write this preface to the second edition, I find the quoted statement still to be valid. The 1980s have been a decade of significant growth and maturity in this field. At the beginning of that decade, many image processing techniques were of academic interest only; their execution was too slow and too costly. Today, thanks to algorithmic and implementation advances, image processing has become a vital cost-effective technology in a host of applications.

Now, in this beginning of the twenty-first century, image processing has become a mature engineering discipline. But advances in the theoretical basis of image processing continue. Some of the reasons for this third edition of the book are to correct defects in the second edition, delete content of marginal interest, and add discussion of new, important topics. Another motivating factor is the inclusion of interactive, computer display imaging examples to illustrate image processing concepts. Finally, this third edition includes computer programming exercises to bolster its theoretical content. These exercises can be implemented using the Programmer’s Imaging Kernel System (PIKS) application program interface (API). PIKS is an International
Standards Organization (ISO) standard library of image processing operators and associated utilities. The PIKS Core version is included on a CD affixed to the back cover of this book.

The book is intended to be an “industrial strength” introduction to digital image processing to be used as a text for an electrical engineering or computer science course in the subject. Also, it can be used as a reference manual for scientists who are engaged in image processing research, developers of image processing hardware and software systems, and practicing engineers and scientists who use image processing as a tool in their applications. Mathematical derivations are provided for most algorithms. The reader is assumed to have a basic background in linear system theory, vector space algebra, and random processes. Proficiency in C language programming is necessary for execution of the image processing programming exercises using PIKS.

The book is divided into six parts. The first three parts cover the basic technologies that are needed to support image processing applications. Part 1 contains three chapters concerned with the characterization of continuous images. Topics include the mathematical representation of continuous images, the psychophysical properties of human vision, and photometry and colorimetry. In Part 2, image sampling and quantization techniques are explored along with the mathematical representation of discrete images. Part 3 discusses two-dimensional signal processing techniques, including general linear operators and unitary transforms such as the Fourier, Hadamard, and Karhunen–Loeve transforms. The final chapter in Part 3 analyzes and compares linear processing techniques implemented by direct convolution and Fourier domain filtering.

The next two parts of the book cover the two principal application areas of image processing. Part 4 presents a discussion of image enhancement and restoration techniques, including restoration models, point and spatial restoration, and geometrical image modification. Part 5, entitled “Image Analysis,” concentrates on the extraction of information from an image. Specific topics include morphological image processing, edge detection, image feature extraction, image segmentation, object shape analysis, and object detection.

Part 6 discusses the software implementation of image processing applications. This part describes the PIKS API and explains its use as a means of implementing image processing algorithms. Image processing programming exercises are included in Part 6.

This third edition represents a major revision of the second edition. In addition to Part 6, new topics include an expanded description of color spaces, the Hartley and Daubechies transforms, wavelet filtering, watershed and snake image segmentation, and Mellin transform matched filtering. Many of the photographic examples in the book are supplemented by executable programs for which readers can adjust algorithm parameters and even substitute their own source images.

Although readers should find this book reasonably comprehensive, many important topics allied to the field of digital image processing have been omitted to limit the size and cost of the book. Among the most prominent omissions are the topics of pattern recognition, image reconstruction from projections, image understanding,
image coding, scientific visualization, and computer graphics. References to some of these topics are provided in the bibliography.

WILLIAM K. PRATT

Los Altos, California
August 2000
ACKNOWLEDGMENTS

The first edition of this book was written while I was a professor of electrical engineering at the University of Southern California (USC). Image processing research at USC began in 1962 on a very modest scale, but the program increased in size and scope with the attendant international interest in the field. In 1971, Dr. Zohrab Kaprielian, then dean of engineering and vice president of academic research and administration, announced the establishment of the USC Image Processing Institute. This environment contributed significantly to the preparation of the first edition. I am deeply grateful to Professor Kaprielian for his role in providing university support of image processing and for his personal interest in my career.

Also, I wish to thank the following past and present members of the Institute’s scientific staff who rendered invaluable assistance in the preparation of the first-edition manuscript: Jean-François Abramatic, Harry C. Andrews, Lee D. Davisson, Olivier Faugeras, Werner Frei, Ali Habibi, Anil K. Jain, Richard P. Kruger, Nasser E. Nahi, Ramakant Nevatia, Keith Price, Guner S. Robinson, Alexander A. Sawchuk, and Lloyd R. Welsh.


The first edition was the outgrowth of notes developed for the USC course “Image Processing.” I wish to thank the many students who suffered through the
early versions of the notes for their valuable comments. Also, I appreciate the reviews of the notes provided by Harry C. Andrews, Werner Frei, Ali Habibi, and Ernest L. Hall, who taught the course.

With regard to the first edition, I wish to offer words of appreciation to the Information Processing Techniques Office of the Advanced Research Projects Agency, directed by Larry G. Roberts, which provided partial financial support of my research at USC.

During the academic year 1977–1978, I performed sabbatical research at the Institut de Recherche d’Informatique et Automatique in LeChesney, France and at the Université de Paris. My research was partially supported by these institutions, USC, and a Guggenheim Foundation fellowship. For this support, I am indebted.

I left USC in 1979 with the intention of forming a company that would put some of my research ideas into practice. Toward that end, I joined a startup company, Compression Labs, Inc., of San Jose, California. There I worked on the development of facsimile and video coding products with Dr., Wen-Hsiung Chen and Dr. Robert H. Wallis. Concurrently, I directed a design team that developed a digital image processor called VICOM. The early contributors to its hardware and software design were William Bryant, Howard Halverson, Stephen K. Howell, Jeffrey Shaw, and William Zech. In 1981, I formed Vicom Systems, Inc., of San Jose, California, to manufacture and market the VICOM image processor. Many of the photographic examples in this book were processed on a VICOM.

Work on the second edition began in 1986. In 1988, I joined Sun Microsystems, of Mountain View, California. At Sun, I collaborated with Stephen A. Howell and Ihtisham Kabir on the development of image processing software. During my time at Sun, I participated in the specification of the Programmers Imaging Kernel application program interface which was made an International Standards Organization standard in 1994. Much of the PIKS content is present in this book. Some of the principal contributors to PIKS include Timothy Butler, Adrian Clark, Patrick Krolak, and Gerard A. Paquette.

In 1993, I formed PixelSoft, Inc., of Los Altos, California, to commercialize the PIKS standard. The PIKS Core version of the PixelSoft implementation is affixed to the back cover of this edition. Contributors to its development include Timothy Butler, Larry R. Hubble, and Gerard A. Paquette.

In 1996, I joined Photon Dynamics, Inc., of San Jose, California, a manufacturer of machine vision equipment for the inspection of electronics displays and printed circuit boards. There, I collaborated with Larry R. Hubble, Sunil S. Sawkar, and Gerard A. Paquette on the development of several hardware and software products based on PIKS.

I wish to thank all those previously cited, and many others too numerous to mention, for their assistance in this industrial phase of my career. Having participated in the design of hardware and software products has been an arduous but intellectually rewarding task. This industrial experience, I believe, has significantly enriched this third edition.
I offer my appreciation to Ray Schmidt, who was responsible for many photographic reproductions in the book, and to Kris Pendelton, who created much of the line art. Also, thanks are given to readers of the first two editions who reported errors both typographical and mental.

Most of all, I wish to thank my wife, Shelly, for her support in the writing of the third edition.

W. K. P.