Analysis and Control of Nonlinear Process Systems

K.M. Hangos
J. Bokor
G. Szederkényi

Springer
Series Editors
Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor of Control Systems and Deputy Director
Industrial Control Centre, Department of Electronic and Electrical Engineering,
University of Strathclyde, Graham Hills Building, 50 George Street, Glasgow G1 1QE, U.K.

Other titles published in this series:
Genetic Algorithms: Concepts and Designs
K.F. Man, K.S. Tang and S. Kwong

Neural Networks for Modelling and Control of Dynamic Systems
M. Nørgaard, O. Ravn, N.K. Poulsen and L.K. Hansen

Modelling and Control of Robot Manipulators (2nd Edition)
L. Sciavicco and B. Siciliano

Fault Detection and Diagnosis in Industrial Systems
L.H. Chiang, E.L. Russell and R.D. Braatz

Soft Computing
L. Fortuna, G. Rizzotto, M. Lavorgna, G. Nunnari, M.G. Xibilia and R. Caponetto

Statistical Signal Processing
T. Chonavel
Translated by Janet Ormrod

T. Söderström

Parallel Computing for Real-time Signal Processing and Control
M.O. Tokhi, M.A. Hossain and M.H. Shaheed

Multivariable Control Systems
P. Albertos and A. Sala

Control Systems with Input and Output Constraints
A.H. Glattfelder and W. Schaufelberger

Model Predictive Control (2nd edition)
E. F. Camacho and C. Bordons
Publication due April 2004

Active Noise and Vibration Control
M.O. Tokhi
Publication due October 2004

Principles of Adaptive Filters and Self-learning Systems
A. Zaknich
Publication due June 2005
K.M. Hangos, PhD, DSci
J. Bokor, PhD, DSci
G. Szederkényi, PhD
Systems and Control Laboratory, Computer and Automation Institute,
Hungarian Academy of Sciences, H-1516 Budapest, PO Box 63, Kende u. 13-17,
Hungary
For God had not given us the spirit of fear; but of power, and of love, and of a sound mind.

II. Timothy 1.6
Foreword

Process systems constitute a key aspect of human activity that is closely linked to the three pillars of sustainable development: Economic competitiveness, Social importance (employment, quality of life) and Environmental impact. The future economic strength of societies will depend on the ability of production industries to produce goods and services by combining competitiveness with quality of life and environmental awareness. In the combined effort to minimize waste through process integration and to optimally operate the constructed processes nonlinear behaviours are being exploited. Thus there will be an increasing need for nonlinear process theory to systematically deal with the relatively complex nonlinear issues that appear with the increasing process systems complexity dictated by our technological capability and the competitive demands.

This book serves as a most promising source that combines process systems engineering with nonlinear systems and control theory. This combination is carried through in the book by providing the reader with references to linear time invariant control theory. The nonlinear passivity theory constitutes a particularly promising contribution that is illustrated on problems of relatively low dimensionality.

The successful establishment of the state-of-art in nonlinear process systems control in a concise textbook represents a laudable contribution to process systems theory for the benefit of future graduate students and researchers and hopefully also for the benefit of human activity.

Lyngby, July 2003

Professor Sten Bay Jørgensen
Director of CAPEC (Computer Aided Process Engineering Center)
Department of Chemical Engineering
Technical University of Denmark
Lyngby, Denmark
This page intentionally left blank
Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and develop. In common with general scientific investigation, new ideas, concepts and interpretations emerge quite spontaneously and these are then discussed, used, discarded or subsumed into the prevailing subject paradigm. Sometimes these innovative concepts coalesce into a new sub-discipline within the broad subject tapestry of control and signal processing. This preliminary battle between old and new usually takes place at conferences, through the Internet and in the journals of the discipline. After a little more maturity has been acquired by the new concepts then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when sufficient material has evolved for the topic to be taught as a specialised tutorial workshop or as a course to undergraduate, graduate or industrial engineers. Advanced Textbooks in Control and Signal Processing are designed as a vehicle for the systematic presentation of course material for both popular and innovative topics in the discipline. It is hoped that prospective authors will welcome the opportunity to publish a structured and systematic presentation of some of the newer emerging control and signal processing technologies in the textbook series.

As most of the problems from linear control analysis have found solutions, advances in future control performance will come from accommodating the non-linear nature of many processes more directly. This is a challenge facing many areas of control engineering. In the process industries there is a fair amount of non-linear model information and the task is to find ways to exploit this knowledge base. On the other hand the analysis of non-linear systems per se is reasonably well developed but in many cases the move to more routine application of these techniques still remains to be taken. We believe it is only by having the utility and advantages of non-linear control demonstrated in practical applications that the non-linear control paradigm will begin to make a contribution to control engineering.
Process control is one area where there is the possibility of demonstrating a major advance through the use of non-linear control. Tackling this challenge we are pleased to have this textbook by Katalin Hangos, József Bokor, and Gábor Szederkényi on “Analysis and control of non-linear process systems” in the Advanced Textbooks in Control and Signal Processing series. It is a text based on past course experience and care has been taken to enhance the accessibility of the material with nice pedagogical features like special indexes, boxed important definitions and end-of-chapter exercises. The underlying rigour of the non-linear analysis has however been preserved. The book is suitable for graduate and postgraduate courses in process systems engineering and for self-study at that level. It is our hope that this textbook will contribute to the more widespread acceptance of non-linear control in applications.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.
Summer 2003
Contents

List of Definitions .. xxiii
List of Examples .. xxiv

1. Introduction ... 1
 1.1 A Brief Overview of Nonlinear Process Control 1
 1.2 Aims and Objectives ... 3
 1.3 The Road Map of the Book 4

2. Basic Notions of Systems and Signals 7
 2.1 Signals .. 7
 2.1.1 What is a Signal? .. 7
 2.1.2 Classification of Signals 9
 2.1.3 Signals of Special Importance 10
 2.1.4 Operations on Signals 12
 2.1.5 L_q Signal Spaces and Signal Norms 15
 2.2 Systems ... 17
 2.2.1 Classification of Systems: Important System Properties 18
 2.2.2 Input–output Stability: L_q-stability and L_q-gain 20
 2.3 Summary ... 20
 2.4 Questions and Exercises 20

3. State-space Models ... 23
 3.1 Basic Notions of State-space Representation 24
 3.2 Finite Dimensional Linear Time-invariant (LTI) Systems 25
 3.2.1 The General Form of State-space Models 25
 3.2.2 Linear Transformation of States 26
 3.2.3 Special Realization Forms of LTI Systems 27
 3.3 Linear Time-varying (LTV) Parameter Systems 28
 3.4 Linear Parameter-varying (LPV) Systems 29
 3.5 Nonlinear Systems .. 31
 3.5.1 The General Form of State-space Models for Input-
 affine Systems ... 32
 3.5.2 Nonlinear Transformation of States 32
4. Dynamic Process Models .. 39
 4.1 Process Modeling for Control Purposes 40
 4.1.1 General Modeling Assumptions 40
 4.1.2 The Principal Mechanisms in Process Systems 41
 4.1.3 The Basic Ingredients of Lumped Process Models .. 42
 4.1.4 The Model Construction Procedure 42
 4.1.5 Conserved Extensive and Intensive Potential Variables 43
 4.1.6 Conservation Balances 44
 4.1.7 Constitutive Equations 45
 4.2 State-space Models of Process Systems 46
 4.2.1 System Variables 46
 4.2.2 State Equations in Input-affine Form 47
 4.2.3 Decomposition of the State Equations Driven by Mechanisms 48
 4.2.4 Balance Volumes Coupled by Convection 49
 4.3 Special Nonlinear Process Systems 51
 4.3.1 Bilinear Process Systems 51
 4.3.2 Process Models in DAE Form 52
 4.4 Heat Exchanger Examples 55
 4.4.1 Heat Exchanger Cells 55
 4.4.2 LTI State-space Model of a Heat Exchanger Cell 57
 4.4.3 LTV State-space Model of a Heat Exchanger Cell 58
 4.4.4 Nonlinear State-space Model of a Heat Exchanger Cell 58
 4.5 CSTR Examples ... 60
 4.5.1 A Simple Unstable CSTR Example 60
 4.5.2 A Simple Fed-batch Fermenter 61
 4.5.3 Simple Continuous Fermenter Models 63
 4.6 Case Study: Modeling a Gas Turbine 65
 4.6.1 System Description 65
 4.6.2 Modeling Assumptions 66
 4.6.3 Conservation Balances 67
 4.6.4 Conservation Balances in Extensive Variable Form .. 68
 4.6.5 Model Equations in Intensive Variable Form 69
 4.6.6 Constitutive Equations 69
 4.6.7 Operation Domain and System Variables 70
 4.7 Summary .. 71
 4.8 Questions and Application Exercises 71
5. **Input–output Models and Realization Theory**
 5.1 Input–output Models of LTI Systems
 5.1.1 Time Domain Description
 5.1.2 Operator Domain Description
 5.1.3 Input–output and State-space Representations of LTI Systems
 5.2 Input–output Representation of Nonlinear Systems
 5.2.1 Fliess’s Functional Expansion
 5.2.2 Volterra Series Representation
 5.2.3 Higher-order Nonlinear Differential Equations
 5.3 Realization Theory
 5.3.1 Realization of LTI Systems
 5.3.2 Realization Theory for Nonlinear Systems
 5.3.3 Realization of Bilinear Systems
 5.4 Hankel Matrix of a 2-input–2-output Bilinear Heat Exchanger Cell model
 5.5 The Zero Dynamics
 5.5.1 The Zero Dynamics of SISO Nonlinear Systems
 5.5.2 Example: The Zero Dynamics of Continuous Fermentation Processes
 5.6 Further Reading
 5.7 Summary
 5.8 Questions and Application Exercises

6. **Controllability and Observability**
 6.1 Controllability and Observability of LTI Systems
 6.1.1 State Observability
 6.1.2 State Controllability
 6.1.3 Conditions for Joint Controllability and Observability
 6.1.4 General Decomposition Theorem
 6.2 Local Controllability and Observability of Nonlinear Systems
 6.2.1 The Controllability Distribution, Controllable Nonlinear Systems
 6.2.2 The Observability Co-distribution, Observable Nonlinear Systems
 6.2.3 The Minimal Realization of Nonlinear Systems
 6.3 Controllability and Observability of Nonlinear Process Systems
 6.3.1 Process Systems with no Source: the Linear-bilinear Time-invariant Case
 6.4 Heat Exchanger Examples
 6.4.1 Local Controllability and Observability of an LTI Heat Exchanger Cell Model
 6.4.2 Local Controllability and Observability of a Nonlinear Heat Exchanger Cell
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3 Local Controllability of a Nonlinear 2-cell Heat Exchanger</td>
<td>118</td>
</tr>
<tr>
<td>6.5 Controllability of a Simple Continuous Fermentation Process</td>
<td>120</td>
</tr>
<tr>
<td>6.5.1 Local Controllability Analysis Using the Linearized Model</td>
<td>120</td>
</tr>
<tr>
<td>6.5.2 Nonlinear Controllability Analysis Using Controllability Distributions</td>
<td>120</td>
</tr>
<tr>
<td>6.6 Controllability (Reachability) of Fed-batch Fermentation Processes</td>
<td>122</td>
</tr>
<tr>
<td>6.6.1 Problem Statement</td>
<td>122</td>
</tr>
<tr>
<td>6.6.2 Nonlinear State-space Model</td>
<td>122</td>
</tr>
<tr>
<td>6.6.3 Reachability Analysis</td>
<td>123</td>
</tr>
<tr>
<td>6.6.4 Calculation of the Coordinate Transformation</td>
<td>125</td>
</tr>
<tr>
<td>6.6.5 Generalizations</td>
<td>128</td>
</tr>
<tr>
<td>6.6.6 Engineering Interpretation</td>
<td>131</td>
</tr>
<tr>
<td>6.6.7 Comments on Observability</td>
<td>132</td>
</tr>
<tr>
<td>6.6.8 The Minimal Realization of Fed-batch Fermentation Processes</td>
<td>134</td>
</tr>
<tr>
<td>6.7 Further Reading</td>
<td>134</td>
</tr>
<tr>
<td>6.8 Summary</td>
<td>135</td>
</tr>
<tr>
<td>6.9 Questions and Application Exercises</td>
<td>135</td>
</tr>
<tr>
<td>7. Stability and The Lyapunov Method</td>
<td>137</td>
</tr>
<tr>
<td>7.1 Stability Notions</td>
<td>138</td>
</tr>
<tr>
<td>7.1.1 External or BIBO (Bounded-input–bounded-output) Stability</td>
<td>138</td>
</tr>
<tr>
<td>7.1.2 BIBO Stability Conditions for LTI Systems</td>
<td>138</td>
</tr>
<tr>
<td>7.1.3 L_2-gain of Linear and Nonlinear Systems</td>
<td>139</td>
</tr>
<tr>
<td>7.1.4 The Small-gain Theorem</td>
<td>140</td>
</tr>
<tr>
<td>7.1.5 Asymptotic or Internal Stability of Nonlinear Systems</td>
<td>142</td>
</tr>
<tr>
<td>7.1.6 Asymptotic Stability of LTI Systems</td>
<td>143</td>
</tr>
<tr>
<td>7.1.7 Relationship Between Asymptotic and BIBO Stability</td>
<td>144</td>
</tr>
<tr>
<td>7.2 Local Stability of Nonlinear Systems</td>
<td>145</td>
</tr>
<tr>
<td>7.2.1 Local Linearization of Nonlinear State-space Models</td>
<td>146</td>
</tr>
<tr>
<td>7.2.2 Relationship Between Local and Global Stability of Nonlinear Systems</td>
<td>148</td>
</tr>
<tr>
<td>7.2.3 Dependence of Local Stability on System Parameters: Bifurcation Analysis</td>
<td>150</td>
</tr>
<tr>
<td>7.3 Lyapunov Function, Lyapunov Theorem</td>
<td>152</td>
</tr>
<tr>
<td>7.3.1 Lyapunov Function and Lyapunov Criterion</td>
<td>152</td>
</tr>
<tr>
<td>7.3.2 Lyapunov Criterion for LTI Systems</td>
<td>154</td>
</tr>
<tr>
<td>7.3.3 Lyapunov Criteria for LPV System Models</td>
<td>155</td>
</tr>
<tr>
<td>7.4 Stability of Process Systems</td>
<td>156</td>
</tr>
<tr>
<td>7.4.1 Structural Stability</td>
<td>157</td>
</tr>
<tr>
<td>7.4.2 Conservation Matrices</td>
<td>158</td>
</tr>
</tbody>
</table>
7.5 Process System Examples

- **7.5.1 Stability Analysis of the Free Mass Convection Network**
- **7.5.2 Lyapunov Function of the Free Mass Convection Network**
- **7.5.3 Structural Stability Analysis of Heat Exchanger Networks**
- **7.5.4 Structural Stability Analysis of a Binary Distillation Column with Constant Molar Flow and Vapor-liquid Equilibrium**
- **7.5.5 Structural Stability of a Binary Distillation Column with Constant Molar Flows in the Non-equilibrium Case**

7.6 Stability Analysis of a Simple Continuous Fermenter

- **7.6.1 Local Stability Analysis**
- **7.6.2 Stability Analysis Based on Local Linearization**
- **7.6.3 Nonlinear Stability Analysis**
- **7.6.4 Stability Analysis based on an LPV Model**

7.7 Further Reading

7.9 Questions and Application Exercises

8. Passivity and the Hamiltonian View

- **8.1 The Storage Function and its Properties**
- **8.2 Passivity Conditions and Asymptotic Stability**
 - **8.2.1 Lyapunov Functions and Storage Functions**
- **8.3 The Hamiltonian View**
 - **8.3.1 Storage Function and the Hamiltonian View**
 - **8.3.2 The Hamiltonian Formulation in Classical Mechanics**
- **8.4 Affine and Simple Hamiltonian Systems**
 - **8.4.1 Affine Hamiltonian Input-output Systems**
 - **8.4.2 Simple Hamiltonian Systems**
- **8.5 Passivity Theory for Process Systems: a Lagrangian Description**
 - **8.5.1 System Variables**
 - **8.5.2 Thermodynamical Storage Function**
 - **8.5.3 Transfer Terms**
 - **8.5.4 Decomposition of the Time Derivative of the Storage Function**
 - **8.5.5 Passivity Analysis**
- **8.6 The Hamiltonian View on Process Systems**
 - **8.6.1 State, Co-state and Input Variables**
 - **8.6.2 Input Variables for the Hamiltonian System Model**
 - **8.6.3 The Hamiltonian Function**
- **8.7 Comparing the Hamiltonian and Lagrangian Description for Process Systems**
- **8.8 Simple Process Examples**
 - **8.8.1 Storage Function of the Heat Exchanger Cell**
10.6 Output Selection for Feedback Linearization 246
10.7 Further Reading 249
10.8 Summary 249
10.9 Questions and Application Exercises 249

11. Passivation by Feedback 253
11.1 The Passivation Problem and Static Feedback Design 253
11.2 Stabilization Using Control Lyapunov Functions 255
11.3 Control Lyapunov Function of a Continuous Fermenter 257
11.4 Case Study: Direct Passivation of a Gas Turbine 259
11.4.1 Nonlinear State-space Model 260
11.4.2 Controller Design 262
11.4.3 Simulation Results 263
11.5 Further Reading 265
11.6 Summary 266
11.7 Questions and Application Exercises 266

12. Stabilization and Loop-shaping 269
12.1 Stabilization of Hamiltonian Systems 269
12.1.1 Asymptotic Stabilization of BIBO-stable Systems 270
12.1.2 Stabilization by Shaping the Potential Energy 271
12.1.3 The Nonlinear PD-controller for Hamiltonian Systems 272
12.1.4 Comparison of the Nonlinear PD-controller and Feedback Linearization 273
12.2 Stabilization and Loop-shaping of Nonlinear Process Systems 273
12.2.1 Process Systems as Simple Hamiltonian Systems 273
12.2.2 Stabilization 274
12.3 Simple Process Examples 274
12.3.1 Hamiltonian Control of the Heat Exchanger Cell 274
12.3.2 Loop-shaping Control of the Free Mass Convection Network 275
12.4 Stabilization of a Simple Unstable CSTR 276
12.4.1 System Parameters and Open-loop Response 277
12.4.2 Nonlinear Proportional Feedback Controller 277
12.4.3 Stability Region 278
12.5 Hamiltonian Control of a Simple Continuous Fermenter 279
12.5.1 Hamiltonian Model of the Fermentation Process 280
12.5.2 Full State Feedback Using the Whole Natural Output 281
12.5.3 State Feedback Using Only a Part of the Natural Output 281
12.5.4 Controller Tuning and Stability Analysis of the Closed-loop System 281
12.5.5 Discussion 284
12.6 Further Reading 284
12.7 Summary 285
12.8 Questions and Application Exercises 285
List of Definitions

2.1.1 Dirac-δ or unit impulse function ... 10
2.1.2 Unit step function ... 11
2.1.3 Convolution of signals ... 13
2.1.4 The domain of Laplace transformation 13
2.1.5 Laplace transformation .. 14
2.1.6 L_q spaces, scalar case .. 15
2.1.7 q-norm, scalar case ... 15
2.1.8 L_qe spaces, scalar case .. 15
2.1.9 L_q spaces, vector case ... 16
2.1.10 q-norm, vector case .. 16
2.1.11 L_qe spaces, vector case ... 16
2.2.1 Causal system .. 18
2.2.2 Linear system ... 18
2.2.3 Time-invariant system .. 20
2.2.4 L_q-stability ... 20
2.2.5 Finite L_q-gain .. 20
2.2.6 L_q-gain .. 20
3.2.1 LTI state-space representation .. 25
3.2.2 Equivalent state-space models .. 26
3.2.3 Diagonal form realization of LTI systems 27
3.2.4 Controller form realization of LTI systems 28
3.5.1 Input-affine nonlinear state-space models 32
3.5.2 Nonlinear coordinate transformation 32
4.1.1 Balance volume .. 40
4.1.2 Extensive variable ... 43
4.1.3 Intensive variable (potential) .. 44
4.2.1 Centered variable .. 47
4.2.2 Passive mass convection network 51
5.1.1 Impulse-response function ... 74
5.1.2 Transfer function ... 76
5.1.3 Proper transfer function .. 76
5.1.4 Equivalent realizations ... 77
5.1.5 Markov parameters ... 77
5.2.1 Multi-index ... 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2</td>
<td>Formal power series</td>
<td>78</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Iterated integrals</td>
<td>79</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Hankel matrix, LTI case</td>
<td>85</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Realization of a formal power series</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Hankel matrix, nonlinear case</td>
<td>86</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Zero dynamics</td>
<td>90</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Relative degree</td>
<td>91</td>
</tr>
<tr>
<td>6.1.1</td>
<td>State observability</td>
<td>98</td>
</tr>
<tr>
<td>6.1.2</td>
<td>LTI state observability</td>
<td>98</td>
</tr>
<tr>
<td>6.1.3</td>
<td>State controllability</td>
<td>99</td>
</tr>
<tr>
<td>6.1.4</td>
<td>LTI state controllability</td>
<td>99</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Irreducible transfer function</td>
<td>101</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Minimal realization</td>
<td>101</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Controllability distribution</td>
<td>105</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Indistinguishable states, observable system</td>
<td>110</td>
</tr>
<tr>
<td>6.2.3</td>
<td>V-indistinguishable states, local observability</td>
<td>110</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Observation space</td>
<td>110</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Observability co-distribution</td>
<td>111</td>
</tr>
<tr>
<td>7.1.2</td>
<td>L_2-gain for linear systems</td>
<td>139</td>
</tr>
<tr>
<td>7.1.3</td>
<td>L_2-gain for nonlinear systems</td>
<td>140</td>
</tr>
<tr>
<td>7.1.4</td>
<td>L_q-stability and finite L_q-gain of relations</td>
<td>140</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Truncated state equation</td>
<td>142</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Stability of a solution</td>
<td>142</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Asymptotic stability, weak</td>
<td>143</td>
</tr>
<tr>
<td>7.1.8</td>
<td>Asymptotic stability, strong</td>
<td>143</td>
</tr>
<tr>
<td>7.1.9</td>
<td>Asymptotic stability of LTI systems</td>
<td>143</td>
</tr>
<tr>
<td>7.1.10</td>
<td>Stability matrix</td>
<td>143</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Topological equivalence</td>
<td>150</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Bifurcation value</td>
<td>151</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Fold bifurcation</td>
<td>152</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Lyapunov function</td>
<td>153</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Quadratically stabilizable systems</td>
<td>155</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Quadratic stability of LPV systems</td>
<td>156</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Structure matrix</td>
<td>157</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Signed structure matrix</td>
<td>157</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Structurally equivalent state-space models</td>
<td>157</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Structural stability</td>
<td>157</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Conservation matrix</td>
<td>158</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Available storage</td>
<td>174</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Storage function</td>
<td>174</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Dissipative (passive) system</td>
<td>175</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Lagrangian for mechanical systems</td>
<td>179</td>
</tr>
</tbody>
</table>
List of Examples

1.2.1 Example of examples ... 4
2.1.1 Simple signals .. 8
2.1.2 Unit impulse and unit step signals 11
2.1.3 Convolution of simple signals 13
2.1.4 Signal spaces and their relations 17
3.2.1 LTI state-space model equation 26
3.3.1 LTV state-space model equation 29
3.4.1 LPV state-space model equation 31
3.5.1 A simple nonlinear state transformation 33
3.5.2 Bilinear state-space model equation 34
4.3.1 A simple evaporator model 52
5.2.1 The first few iterated integrals 79
5.2.2 Nonlinear input–output model 81
5.3.1 Hankel matrix of a bilinear system 88
6.1.1 LTI controllability and observability 100
6.1.2 LTI joint controllability and observability 102
6.2.1 LTI controllability distribution 107
6.2.2 Controllability distribution 108
6.2.3 Observability co-distribution 112
6.2.4 LTI observability co-distribution 113
7.1.1 Asymptotic and BIBO stability 1 145
7.1.2 Asymptotic and BIBO stability 2 145
7.2.1 Global and local asymptotic stability 1 148
7.2.2 Global and local asymptotic stability 2 149
7.2.3 Asymptotic stability, nonlinear case 150
7.3.1 Lyapunov theorem for an LTI system 155
7.4.1 Structural stability .. 158
8.3.1 Hamiltonian model of a spring 180
8.4.1 Hamiltonian model of a forced spring 183
8.4.2 Hamiltonian model of a damped spring 184
9.2.1 LTI pole-placement controller 212
9.3.1 LQR for an LTI system 216
10.1.1 Relative degree of SISO LTI systems 229
10.1.2 Relative degree of a nonlinear system 229
10.3.1 Input–output linearization .. 239
10.4.1 Feedback linearization of a tank 240
11.2.1 Quadratic control Lyapunov function 257
A.3.1 Simple Lie-derivatives ... 290
A.3.2 Simple Lie-products .. 291
A.4.1 Simple distribution ... 294
A.4.2 Gradient, a special co-vector field 295