Classification, Parameter Estimation and State Estimation

An Engineering Approach using MATLAB®

F. van der Heijden
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
The Netherlands

R.P.W. Duin
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
The Netherlands

D. de Ridder
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
The Netherlands

D.M.J. Tax
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
The Netherlands

John Wiley & Sons, Ltd
Contents

Preface xi
Foreword xv

1 Introduction 1
 1.1 The scope of the book 2
 1.1.1 Classification 3
 1.1.2 Parameter estimation 4
 1.1.3 State estimation 5
 1.1.4 Relations between the subjects 6
 1.2 Engineering 9
 1.3 The organization of the book 11
 1.4 References 12

2 Detection and Classification 13
 2.1 Bayesian classification 16
 2.1.1 Uniform cost function and minimum error rate 23
 2.1.2 Normal distributed measurements; linear
 and quadratic classifiers 25
 2.2 Rejection 32
 2.2.1 Minimum error rate classification with
 reject option 33
 2.3 Detection: the two-class case 35
 2.4 Selected bibliography 43
 2.5 Exercises 43

3 Parameter Estimation 45
 3.1 Bayesian estimation 47
 3.1.1 MMSE estimation 54
3.1.2 MAP estimation 55
3.1.3 The Gaussian case with linear sensors 56
3.1.4 Maximum likelihood estimation 57
3.1.5 Unbiased linear MMSE estimation 59
3.2 Performance of estimators 62
3.2.1 Bias and covariance 63
3.2.2 The error covariance of the unbiased linear MMSE estimator 67
3.3 Data fitting 68
3.3.1 Least squares fitting 68
3.3.2 Fitting using a robust error norm 72
3.3.3 Regression 74
3.4 Overview of the family of estimators 77
3.5 Selected bibliography 79
3.6 Exercises 79

4 State Estimation 81
4.1 A general framework for online estimation 82
4.1.1 Models 83
4.1.2 Optimal online estimation 86
4.2 Continuous state variables 88
4.2.1 Optimal online estimation in linear-Gaussian systems 89
4.2.2 Suboptimal solutions for nonlinear systems 100
4.2.3 Other filters for nonlinear systems 112
4.3 Discrete state variables 113
4.3.1 Hidden Markov models 113
4.3.2 Online state estimation 117
4.3.3 Offline state estimation 120
4.4 Mixed states and the particle filter 128
4.4.1 Importance sampling 128
4.4.2 Resampling by selection 130
4.4.3 The condensation algorithm 131
4.5 Selected bibliography 135
4.6 Exercises 136

5 Supervised Learning 139
5.1 Training sets 140
5.2 Parametric learning 142
5.2.1 Gaussian distribution, mean unknown 143
8 State Estimation in Practice 253
8.1 System identification 256
8.1.1 Structuring 256
8.1.2 Experiment design 258
8.1.3 Parameter estimation 259
8.1.4 Evaluation and model selection 263
8.1.5 Identification of linear systems with a random input 264
8.2 Observability, controllability and stability 266
8.2.1 Observability 266
8.2.2 Controllability 269
8.2.3 Dynamic stability and steady state solutions 270
8.3 Computational issues 276
8.3.1 The linear-Gaussian MMSE form 280
8.3.2 Sequential processing of the measurements 282
8.3.3 The information filter 283
8.3.4 Square root filtering 287
8.3.5 Comparison 291
8.4 Consistency checks 292
8.4.1 Orthogonality properties 293
8.4.2 Normalized errors 294
8.4.3 Consistency checks 296
8.4.4 Fudging 299
8.5 Extensions of the Kalman filter 300
8.5.1 Autocorrelated noise 300
8.5.2 Cross-correlated noise 303
8.5.3 Smoothing 303
8.6 References 306
8.7 Exercises 307

9 Worked Out Examples 309
9.1 Boston Housing classification problem 309
9.1.1 Data set description 309
9.1.2 Simple classification methods 311
CONTENTS

9.1.3 Feature extraction 312
9.1.4 Feature selection 314
9.1.5 Complex classifiers 316
9.1.6 Conclusions 319

9.2 Time-of-flight estimation of an acoustic tone burst 319
9.2.1 Models of the observed waveform 321
9.2.2 Heuristic methods for determining the ToF 323
9.2.3 Curve fitting 324
9.2.4 Matched filtering 326
9.2.5 ML estimation using covariance models for the reflections 327
9.2.6 Optimization and evaluation 332

9.3 Online level estimation in an hydraulic system 339
9.3.1 Linearized Kalman filtering 341
9.3.2 Extended Kalman filtering 343
9.3.3 Particle filtering 344
9.3.4 Discussion 350

9.4 References 352

Appendix A Topics Selected from Functional Analysis 353
A.1 Linear spaces 353
A.1.1 Normed linear spaces 355
A.1.2 Euclidean spaces or inner product spaces 357
A.2 Metric spaces 358
A.3 Orthonormal systems and Fourier series 360
A.4 Linear operators 362
A.5 References 366

Appendix B Topics Selected from Linear Algebra and Matrix Theory 367
B.1 Vectors and matrices 367
B.2 Convolution 370
B.3 Trace and determinant 372
B.4 Differentiation of vector and matrix functions 373
B.5 Diagonalization of self-adjoint matrices 375
B.6 Singular value decomposition (SVD) 378
B.7 References 381

Appendix C Probability Theory 383
C.1 Probability theory and random variables 383
C.1.1 Moments 386
C.1.2 Poisson distribution 387
C.1.3 Binomial distribution 387
C.1.4 Normal distribution 388
C.1.5 The Chi-square distribution 389
C.2 Bivariate random variables 390
C.3 Random vectors 395
 C.3.1 Linear operations on Gaussian random vectors 396
 C.3.2 Decorrelation 397
C.4 Reference 398

Appendix D Discrete-time Dynamic Systems 399
 D.1 Discrete-time dynamic systems 399
 D.2 Linear systems 400
 D.3 Linear time invariant systems 401
 D.3.1 Diagonalization of a system 401
 D.3.2 Stability 402
 D.4 References 403

Appendix E Introduction to PRTools 405
 E.1 Motivation 405
 E.2 Essential concepts in PRTools 406
 E.3 Implementation 407
 E.4 Some details 410
 E.4.1 Data sets 410
 E.4.2 Classifiers and mappings 411
 E.5 How to write your own mapping 414

Appendix F MATLAB Toolboxes Used 417

Index 419