The ever-increasing demand on engineers to lower production costs to withstand competition has prompted engineers to look for rigorous methods of decision making, such as optimization methods, to design and produce products both economically and efficiently. Optimization techniques, having reached a degree of maturity over the past several years, are being used in a wide spectrum of industries, including aerospace, automotive, chemical, electrical, and manufacturing industries. With rapidly advancing computer technology, computers are becoming more powerful, and correspondingly, the size and the complexity of the problems being solved using optimization techniques are also increasing. Optimization methods, coupled with modern tools of computer-aided design, are also being used to enhance the creative process of conceptual and detailed design of engineering systems.

The purpose of this textbook is to present the techniques and applications of engineering optimization in a simple manner. Essential proofs and explanations of the various techniques are given in a simple manner without sacrificing accuracy. New concepts are illustrated with the help of numerical examples. Although most engineering design problems can be solved using nonlinear programming techniques, there are a variety of engineering applications for which other optimization methods, such as linear, geometric, dynamic, integer, and stochastic programming techniques, are most suitable. This book presents the theory and applications of all optimization techniques in a comprehensive manner. Some of the recently developed methods of optimization, such as genetic algorithms, simulated annealing, neural-network-based methods, and fuzzy optimization, are also discussed in the book.

A large number of solved examples, review questions, problems, figures, and references are included to enhance the presentation of the material. Al-
though emphasis is placed on engineering design problems, examples and problems are taken from several fields of engineering to make the subject appealing to all branches of engineering.

This book can be used either at the junior/senior or first-year-graduate-level optimum design or engineering optimization courses. At Purdue University, I cover Chapters 1, 2, 3, 5, 6, and 7 and parts of Chapters 8, 10, 12, and 13 in a dual-level course entitled *Optimal Design: Theory with Practice*. In this course, a design project is also assigned to each student in which the student identifies, formulates, and solves a practical engineering problem of his or her interest by applying or modifying an optimization technique. This design project gives the student a feeling for ways that optimization methods work in practice. The book can also be used, with some supplementary material, for a second course on engineering optimization or optimum design or structural optimization. The relative simplicity with which the various topics are presented makes the book useful both to students and to practicing engineers for purposes of self-study. The book also serves as reference source for different engineering optimization applications. Although the emphasis of the book is on engineering applications, it would also be useful to other areas, such as operations research and economics. A knowledge of matrix theory and differential calculus is assumed on the part of the reader.

The book consists of thirteen chapters and two appendices. Chapter 1 provides an introduction to engineering optimization and optimum design and an overview of optimization methods. The concepts of design space, constraint surfaces, and contours of objective function are introduced here. In addition, the formulation of various types of optimization problems is illustrated through a variety of examples taken from various fields of engineering. Chapter 2 reviews the essentials of differential calculus useful in finding the maxima and minima of functions of several variables. The methods of constrained variation and Lagrange multipliers are presented for solving problems with equality constraints. The Kuhn–Tucker conditions for inequality-constrained problems are given along with a discussion of convex programming problems.

Chapters 3 and 4 deal with the solution of linear programming problems. The characteristics of a general linear programming problem and the development of the simplex method of solution are given in Chapter 3. Some advanced topics in linear programming, such as the revised simplex method, duality theory, the decomposition principle, and postoptimality analysis, are discussed in Chapter 4. The extension of linear programming to solve quadratic programming problems is also considered in Chapter 4.

Chapters 5 through 7 deal with the solution of nonlinear programming problems. In Chapter 5, numerical methods of finding the optimum solution of a function of a single variable are given. Chapter 6 deals with the methods of unconstrained optimization. The algorithms for various zeroth-, first-, and second-order techniques are discussed along with their computational aspects. Chapter 7 is concerned with the solution of nonlinear optimization problems in the presence of inequality and equality constraints. Both the direct and in-
direct methods of optimization are discussed. The methods presented in this chapter can be treated as the most general techniques for the solution of any optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution techniques for problems with mixed inequality constraints and complementary geometric programming are also considered. In Chapter 9, computational procedures for solving discrete and continuous dynamic programming problems are presented. The problem of dimensionality is also discussed. Chapter 10 introduces integer programming and gives several algorithms for solving integer and discrete linear and nonlinear optimization problems. Chapter 11 reviews the basic probability theory and presents techniques of stochastic linear, nonlinear, geometric, and dynamic programming. The theory and applications of calculus of variations, optimal control theory, multiple objective optimization, optimality criteria methods, genetic algorithms, simulated annealing, neural-network-based methods, and fuzzy system optimization are discussed briefly in Chapter 12. The various approximation techniques used to speed up the convergence of practical mechanical and structural optimization problems are outlined in Chapter 13. Appendix A presents the definitions and properties of convex and concave functions. Finally, a brief discussion of the computational aspects and some of the commercial optimization programs is given in Appendix B.
ACKNOWLEDGMENTS

I wish to thank my wife, Kamala, and daughters, Sridevi and Shobha, for their patience, understanding, encouragement, and support in preparing the manuscript.

S. S. Rao

March 1995
The ever-increasing demand on engineers to lower production costs to withstand competition has prompted engineers to look for rigorous methods of decision making, such as optimization methods, to design and produce products both economically and efficiently. Optimization techniques, having reached a degree of maturity over the past several years, are being used in a wide spectrum of industries, including aerospace, automotive, chemical, electrical, and manufacturing industries. With rapidly advancing computer technology, computers are becoming more powerful, and correspondingly, the size and the complexity of the problems being solved using optimization techniques are also increasing. Optimization methods, coupled with modern tools of computer-aided design, are also being used to enhance the creative process of conceptual and detailed design of engineering systems.

The purpose of this textbook is to present the techniques and applications of engineering optimization in a simple manner. Essential proofs and explanations of the various techniques are given in a simple manner without sacrificing accuracy. New concepts are illustrated with the help of numerical examples. Although most engineering design problems can be solved using nonlinear programming techniques, there are a variety of engineering applications for which other optimization methods, such as linear, geometric, dynamic, integer, and stochastic programming techniques, are most suitable. This book presents the theory and applications of all optimization techniques in a comprehensive manner. Some of the recently developed methods of optimization, such as genetic algorithms, simulated annealing, neural-network-based methods, and fuzzy optimization, are also discussed in the book.

A large number of solved examples, review questions, problems, figures, and references are included to enhance the presentation of the material.
though emphasis is placed on engineering design problems, examples and problems are taken from several fields of engineering to make the subject appealing to all branches of engineering.

This book can be used either at the junior/senior or first-year-graduate-level optimum design or engineering optimization courses. At Purdue University, I cover Chapters 1, 2, 3, 5, 6, and 7 and parts of Chapters 8, 10, 12, and 13 in a dual-level course entitled *Optimal Design: Theory with Practice*. In this course, a design project is also assigned to each student in which the student identifies, formulates, and solves a practical engineering problem of his or her interest by applying or modifying an optimization technique. This design project gives the student a feeling for ways that optimization methods work in practice. The book can also be used, with some supplementary material, for a second course on engineering optimization or optimum design or structural optimization. The relative simplicity with which the various topics are presented makes the book useful both to students and to practicing engineers for purposes of self-study. The book also serves as reference source for different engineering optimization applications. Although the emphasis of the book is on engineering applications, it would also be useful to other areas, such as operations research and economics. A knowledge of matrix theory and differential calculus is assumed on the part of the reader.

The book consists of thirteen chapters and two appendices. Chapter 1 provides an introduction to engineering optimization and optimum design and an overview of optimization methods. The concepts of design space, constraint surfaces, and contours of objective function are introduced here. In addition, the formulation of various types of optimization problems is illustrated through a variety of examples taken from various fields of engineering. Chapter 2 reviews the essentials of differential calculus useful in finding the maxima and minima of functions of several variables. The methods of constrained variation and Lagrange multipliers are presented for solving problems with equality constraints. The Kuhn–Tucker conditions for inequality-constrained problems are given along with a discussion of convex programming problems.

Chapters 3 and 4 deal with the solution of linear programming problems. The characteristics of a general linear programming problem and the development of the simplex method of solution are given in Chapter 3. Some advanced topics in linear programming, such as the revised simplex method, duality theory, the decomposition principle, and postoptimality analysis, are discussed in Chapter 4. The extension of linear programming to solve quadratic programming problems is also considered in Chapter 4.

Chapters 5 through 7 deal with the solution of nonlinear programming problems. In Chapter 5, numerical methods of finding the optimum solution of a function of a single variable are given. Chapter 6 deals with the methods of unconstrained optimization. The algorithms for various zeroth-, first-, and second-order techniques are discussed along with their computational aspects. Chapter 7 is concerned with the solution of nonlinear optimization problems in the presence of inequality and equality constraints. Both the direct and in-
direct methods of optimization are discussed. The methods presented in this chapter can be treated as the most general techniques for the solution of any optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution techniques for problems with mixed inequality constraints and complementary geometric programming are also considered. In Chapter 9, computational procedures for solving discrete and continuous dynamic programming problems are presented. The problem of dimensionality is also discussed. Chapter 10 introduces integer programming and gives several algorithms for solving integer and discrete linear and nonlinear optimization problems. Chapter 11 reviews the basic probability theory and presents techniques of stochastic linear, nonlinear, geometric, and dynamic programming. The theory and applications of calculus of variations, optimal control theory, multiple objective optimization, optimality criteria methods, genetic algorithms, simulated annealing, neural-network-based methods, and fuzzy system optimization are discussed briefly in Chapter 12. The various approximation techniques used to speed up the convergence of practical mechanical and structural optimization problems are outlined in Chapter 13. Appendix A presents the definitions and properties of convex and concave functions. Finally, a brief discussion of the computational aspects and some of the commercial optimization programs is given in Appendix B.
I wish to thank my wife, Kamala, and daughters, Sridevi and Shobha, for their patience, understanding, encouragement, and support in preparing the manuscript.

S. S. Rao

March 1995
Contents

Preface .. vii
Acknowledgments ... xi

1. **Introduction to Optimization** ... 1
 1.1 Introduction .. 1
 1.2 Historical Development ... 3
 1.3 Engineering Applications of Optimization .. 4
 1.4 Statement of an Optimization Problem .. 5
 1.4.1 Design Vector .. 6
 1.4.2 Design Constraints ... 7
 1.4.3 Constraint Surface ... 8
 1.4.4 Objective Function ... 9
 1.4.5 Objective Function Surfaces ... 10
 1.5 Classification of Optimization Problems .. 15
 1.5.1 Classification Based on the Existence of Constraints 15
 1.5.2 Classification Based on the Nature of the Design Variables 15
 1.5.3 Classification Based on the Physical Structure of the Problem 17
 1.5.4 Classification Based on the Nature of the Equations Involved 20
2. Classical Optimization Techniques

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>2.2 Single-Variable Optimization</td>
<td>65</td>
</tr>
<tr>
<td>2.3 Multivariable Optimization with No Constraints</td>
<td>71</td>
</tr>
<tr>
<td>2.3.1 Semidefinite Case</td>
<td>77</td>
</tr>
<tr>
<td>2.3.2 Saddle Point</td>
<td>77</td>
</tr>
<tr>
<td>2.4 Multivariable Optimization with Equality Constraints</td>
<td>80</td>
</tr>
<tr>
<td>2.4.1 Solution by Direct Substitution</td>
<td>80</td>
</tr>
<tr>
<td>2.4.2 Solution by the Method of Constrained Variation</td>
<td>82</td>
</tr>
<tr>
<td>2.4.3. Solution by the Method of Lagrange Multipliers</td>
<td>91</td>
</tr>
<tr>
<td>2.5 Multivariable Optimization with Inequality Constraints</td>
<td>100</td>
</tr>
<tr>
<td>2.5.1 Kuhn-Tucker Conditions</td>
<td>105</td>
</tr>
<tr>
<td>2.5.2 Constraint Qualification</td>
<td>105</td>
</tr>
<tr>
<td>2.6 Convex Programming Problem</td>
<td>112</td>
</tr>
</tbody>
</table>
5.4 Exhaustive Search .. 281
5.5 Dichotomous Search .. 283
5.6 Interval Halving Method .. 286
5.7 Fibonacci Method ... 289
5.8 Golden Section Method .. 296
5.9 Comparison of Elimination Methods 298

Interpolation Methods .. 299
5.10 Quadratic Interpolation Method ... 301
5.11 Cubic Interpolation Method .. 308
5.12 Direct Root Methods ... 316
 5.12.1 Newton Method .. 316
 5.12.2 Quasi-Newton Method 319
 5.12.3 Secant Method ... 321
5.13 Practical Considerations ... 324
 5.13.1 How to Make the Methods Efficient and More Reliable 324
 5.13.2 Implementation in Multivariable Optimization Problems 325
 5.13.3 Comparison of Methods 325

References and Bibliography .. 326
Review Questions ... 326
Problems ... 327

6.1 Introduction ... 333
 6.1.1 Classification of Unconstrained Minimization Methods 336
 6.1.2 General Approach ... 337
 6.1.3 Rate of Convergence .. 337
 6.1.4 Scaling of Design Variables 339
Direct Search Methods .. 343
6.2 Random Search Methods .. 343
 6.2.1 Random Jumping Method ... 343
 6.2.2 Random Walk Method .. 345
 6.2.3 Random Walk Method with Direction Exploitation 347
6.3 Grid Search Method .. 348
6.4 Univariate Method .. 350
6.5 Pattern Directions .. 353
6.6 Hooke and Jeeves’ Method ... 354
6.7 Powell’s Method .. 357
 6.7.1 Conjugate Directions ... 358
 6.7.2 Algorithm ... 362
6.8 Rosenbrock’s Method of Rotating Coordinates 368
6.9 Simplex Method .. 368
 6.9.1 Reflection ... 369
 6.9.2 Expansion ... 372
 6.9.3 Contraction .. 373

Indirect Search (Descent) Methods .. 376
6.10 Gradient of a Function ... 376
 6.10.1 Evaluation of the Gradient ... 379
 6.10.2 Rate of Change of a Function Along a Direction 380
6.11 Steepest Descent (Cauchy) Method 381
6.12 Conjugate Gradient (Fletcher-Reeves) Method 383
 6.12.1 Development of the Fletcher-Reeves Method 384
 6.12.2 Fletcher-Reeves Method .. 386
6.13 Newton's Method ... 389
6.14 Marquardt Method .. 392
6.15 Quasi-Newton Methods ... 394
7. Nonlinear Programming III: Constrained Optimization Techniques .. 428

7.1 Introduction .. 428

7.2 Characteristics of a Constrained Problem .. 428

Direct Methods .. 432

7.3 Random Search Methods .. 432

7.4 Complex Method .. 433

7.5 Sequential Linear Programming .. 436

7.6 Basic Approach in the Methods of Feasible Directions .. 443

7.7 Zoutendijk’s Method of Feasible Directions ... 444

7.7.1 Direction-Finding Problem ... 446

7.7.2 Determination of Step Length .. 449

7.7.3 Termination Criteria .. 452

7.8 Rosen’s Gradient Projection Method .. 455

7.8.1 Determination of Step Length .. 459

7.9 Generalized Reduced Gradient Method .. 465

7.10 Sequential Quadratic Programming ... 477

7.10.1 Derivation .. 477

7.10.2 Solution Procedure .. 480

Indirect Methods .. 485

7.11 Transformation Techniques ... 485
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12</td>
<td>Basic Approach of the Penalty Function Method</td>
<td>487</td>
</tr>
<tr>
<td>7.13</td>
<td>Interior Penalty Function Method</td>
<td>489</td>
</tr>
<tr>
<td>7.14</td>
<td>Convex Programming Problem</td>
<td>501</td>
</tr>
<tr>
<td>7.15</td>
<td>Exterior Penalty Function Method</td>
<td>502</td>
</tr>
<tr>
<td>7.16</td>
<td>Extrapolation Technique in the Interior Penalty Function Method</td>
<td>507</td>
</tr>
<tr>
<td>7.16.1</td>
<td>Extrapolation of the Design Vector X</td>
<td>508</td>
</tr>
<tr>
<td>7.16.2</td>
<td>Extrapolation of the Function f</td>
<td>510</td>
</tr>
<tr>
<td>7.17</td>
<td>Extended Interior Penalty Function Methods</td>
<td>512</td>
</tr>
<tr>
<td>7.17.1</td>
<td>Linear Extended Penalty Function Method</td>
<td>512</td>
</tr>
<tr>
<td>7.17.2</td>
<td>Quadratic Extended Penalty Function Method</td>
<td>513</td>
</tr>
<tr>
<td>7.18</td>
<td>Penalty Function Method for Problems with Mixed Equality and Inequality Constraints</td>
<td>515</td>
</tr>
<tr>
<td>7.18.1</td>
<td>Interior Penalty Function Method</td>
<td>515</td>
</tr>
<tr>
<td>7.18.2</td>
<td>Exterior Penalty Function Method</td>
<td>517</td>
</tr>
<tr>
<td>7.19</td>
<td>Penalty Function Method for Parametric Constraints</td>
<td>517</td>
</tr>
<tr>
<td>7.19.1</td>
<td>Parametric Constraint</td>
<td>517</td>
</tr>
<tr>
<td>7.19.2</td>
<td>Handling Parametric Constraints</td>
<td>519</td>
</tr>
<tr>
<td>7.20</td>
<td>Augmented Lagrange Multiplier Method</td>
<td>521</td>
</tr>
<tr>
<td>7.20.1</td>
<td>Equality-Constrained Problems</td>
<td>521</td>
</tr>
<tr>
<td>7.20.2</td>
<td>Inequality-Constrained Problems</td>
<td>523</td>
</tr>
<tr>
<td>7.20.3</td>
<td>Mixed Equality-Inequality Constrained Problems</td>
<td>525</td>
</tr>
<tr>
<td>7.21</td>
<td>Checking Convergence of Constrained Optimization Problems</td>
<td>527</td>
</tr>
<tr>
<td>7.21.1</td>
<td>Perturbing the Design Vector</td>
<td>527</td>
</tr>
<tr>
<td>7.21.2</td>
<td>Testing the Kuhn-Tucker Conditions</td>
<td>528</td>
</tr>
</tbody>
</table>
8. Geometric Programming ... 556
 8.1 Introduction ... 556
 8.2 Posynomial ... 556
 8.3 Unconstrained Minimization Problem 557
 8.4 Solution of an Unconstrained Geometric Programming Problem Using Differential Calculus 558
 8.5 Solution of an Unconstrained Geometric Programming Problem Using Arithmetic-Geometric Inequality .. 566
 8.6 Primal-Dual Relationship and Sufficiency Conditions in the Unconstrained Case ... 567
 8.7 Constrained Minimization .. 575
 8.8 Solution of a Constrained Geometric Programming Problem ... 576
 8.9 Primal and Dual Programs in the Case of Less-Than Inequalities .. 577
 8.10 Geometric Programming with Mixed Inequality Constraints ... 585
 8.11 Complementary Geometric Programming 588
 8.12 Applications of Geometric Programming 594
References and Bibliography .. 609
Review Questions ... 611
Problems ... 612

9. Dynamic Programming .. 616
9.1 Introduction ... 616
9.2 Multistage Decision Processes ... 617
 9.2.1 Definition and Examples 617
 9.2.2 Representation of a Multistage Decision Process .. 618
 9.2.3 Conversion of a Nonserial System to a Serial System ... 620
 9.2.4 Types of Multistage Decision Problems 621
9.3 Concept of Suboptimization and the Principle of Optimality .. 622
9.4 Computational Procedure in Dynamic Programming .. 626
9.5 Example Illustrating the Calculus Method of Solution .. 630
9.6 Example Illustrating the Tabular Method of Solution 635
9.7 Conversion of a Final Value Problem into an Initial Value Problem ... 641
9.8 Linear Programming as a Case of Dynamic Programming .. 644
9.9 Continuous Dynamic Programming ... 649
9.10 Additional Applications .. 653
 9.10.1 Design of Continuous Beams 653
 9.10.2 Optimal Layout (Geometry) of a Truss 654
 9.10.3 Optimal Design of a Gear Train 655
 9.10.4 Design of a Minimum-Cost Drainage System ... 656
10. **Integer Programming** .. 667
 10.1 Introduction ... 667

 Integer Linear Programming .. 668
 10.2 Graphical Representation ... 668
 10.3 Gomory’s Cutting Plane Method .. 670
 10.3.1 Concept of a Cutting Plane .. 670
 10.3.2 Gomory’s Method for All-Integer Programming Problems .. 672
 10.3.3 Gomory’s Method for Mixed-Integer Programming Problems .. 679
 10.4 Balas’ Algorithm for Zero-One Programming Problems 685

 Integer Nonlinear Programming .. 687
 10.5 Integer Polynomial Programming 687
 10.5.1 Representation of an Integer Variable by an Equivalent System of Binary Variables .. 688
 10.5.2 Conversion of a Zero-One Polynomial Programming Problem into a Zero-One LP Problem .. 689
 10.6 Branch-and-Bound Method .. 690
 10.7 Sequential Linear Discrete Programming 697
 10.8 Generalized Penalty Function Method 701

References and Bibliography .. 707
Review Questions ... 708
Problems .. 709
11. **Stochastic Programming** ... 715

11.1 Introduction ... 715

11.2 Basic Concepts of Probability Theory 716

11.2.1 Definition of Probability .. 716

11.2.2 Random Variables and Probability Density Functions ... 717

11.2.3 Mean and Standard Deviation .. 719

11.2.4 Function of a Random Variable 722

11.2.5 Jointly Distributed Random Variables 723

11.2.6 Covariance and Correlation .. 724

11.2.7 Functions of Several Random Variables 725

11.2.8 Probability Distributions ... 727

11.2.9 Central Limit Theorem .. 732

11.3 Stochastic Linear Programming .. 732

11.4 Stochastic Nonlinear Programming 738

11.4.1 Objective Function ... 738

11.4.2 Constraints ... 739

11.5 Stochastic Geometric Programming 746

11.6 Stochastic Dynamic Programming 748

11.6.1 Optimality Criterion ... 748

11.6.2 Multistage Optimization .. 749

11.6.3 Stochastic Nature of the Optimum Decisions 753

References and Bibliography ... 758

Review Questions ... 759

Problems ... 761

12. **Further Topics in Optimization** ... 768

12.1 Introduction ... 768
12.2 Separable Programming ... 769
 12.2.1 Transformation of a Nonlinear Function to Separable Form 770
 12.2.2 Piecewise Linear Approximation of a Nonlinear Function 772
 12.2.3 Formulation of a Separable Nonlinear Programming Problem 774
12.3 Multiobjective Optimization .. 779
 12.3.1 Utility Function Method ... 780
 12.3.2 Inverted Utility Function Method ... 781
 12.3.3 Global Criterion Method .. 781
 12.3.4 Bounded Objective Function Method .. 781
 12.3.5 Lexicographic Method .. 782
 12.3.6 Goal Programming Method .. 782
12.4 Calculus of Variations ... 783
 12.4.1 Introduction .. 783
 12.4.2 Problem of Calculus of Variations .. 784
 12.4.3 Lagrange Multipliers and Constraints .. 791
 12.4.4 Generalization ... 795
12.5 Optimal Control Theory ... 795
 12.5.1 Necessary Conditions for Optimal Control .. 796
 12.5.2 Necessary Conditions for a General Problem 799
12.6 Optimality Criteria Methods ... 800
 12.6.1 Optimality Criteria with a Single Displacement Constraint 801
 12.6.2 Optimality Criteria with Multiple Displacement Constraints 802
 12.6.3 Reciprocal Approximations ... 803
12.7 Genetic Algorithms ... 806
 12.7.1 Introduction ... 806
 12.7.2 Representation of Design Variables 808
 12.7.3 Representation of Objective Function and Constraints .. 809
 12.7.4 Genetic Operators .. 810
 12.7.5 Numerical Results .. 811
12.8 Simulated Annealing .. 811
12.9 Neural-Network-Based Optimization 814
12.10 Optimization of Fuzzy Systems .. 818
 12.10.1 Fuzzy Set Theory .. 818
 12.10.2 Optimization of Fuzzy Systems 821
 12.10.3 Computational Procedure .. 823
References and Bibliography .. 824
Review Questions ... 827
Problems .. 829

13. Practical Aspects of Optimization ... 836
 13.1 Introduction ... 836
 13.2 Reduction of Size of an Optimization Problem 836
 13.2.1 Reduced Basis Technique 836
 13.2.2 Design Variable Linking Technique 837
 13.3 Fast Reanalysis Techniques ... 839
 13.3.1 Incremental Response Approach 839
 13.3.2 Basis Vector Approach 845
 13.4 Derivatives of Static Displacements and Stresses 847
 13.5 Derivatives of Eigenvalues and Eigenvectors 848
 13.5.1 Derivatives of λ_i 848
 13.5.2 Derivatives of Y_i .. 849
 13.6 Derivatives of Transient Response 851
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7 Sensitivity of Optimum Solution to Problem Parameters</td>
<td>854</td>
</tr>
<tr>
<td>13.7.1 Sensitivity Equations Using Kuhn-Tucker Conditions</td>
<td>854</td>
</tr>
<tr>
<td>13.7.2 Sensitivity Equations Using the Concept of Feasible Direction</td>
<td>857</td>
</tr>
<tr>
<td>13.8 Multilevel Optimization</td>
<td>858</td>
</tr>
<tr>
<td>13.8.1 Basic Idea</td>
<td>858</td>
</tr>
<tr>
<td>13.8.2 Method</td>
<td>859</td>
</tr>
<tr>
<td>13.9 Parallel Processing</td>
<td>864</td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>867</td>
</tr>
<tr>
<td>Review Questions</td>
<td>868</td>
</tr>
<tr>
<td>Problems</td>
<td>869</td>
</tr>
<tr>
<td>Appendices</td>
<td>876</td>
</tr>
<tr>
<td>Appendix A: Convex and Concave Functions</td>
<td>876</td>
</tr>
<tr>
<td>Appendix B: Some Computational Aspects of Optimization</td>
<td>882</td>
</tr>
<tr>
<td>Answers to Selected Problems</td>
<td>888</td>
</tr>
<tr>
<td>Index</td>
<td>895</td>
</tr>
</tbody>
</table>