To our parents and families
Preface

Symbols

1 \hspace{1em} OVERVIEW

1.1 The Asymptotic Observer

1.2 The Optimum Transient Observer
 1.2.1 The Mean-Square-Error Criterion
 1.2.2 Minimization via Completion of Squares
 1.2.3 The Optimum Transient Observer
 1.2.4 The Kalman Filter

1.3 Coming Attractions
 1.3.1 Smoothed Estimators
 1.3.2 Extensions to Time-Variant Models
 1.3.3 Fast Algorithms for Time-Invariant Systems
 1.3.4 Numerical Issues
 1.3.5 Array Algorithms
 1.3.6 Other Topics

1.4 The Innovations Process
 1.4.1 Whiteness of the Innovations Process
 1.4.2 Innovations Representations
 1.4.3 Canonical Covariance Factorization
 1.4.4 Exploiting State-Space Structure for Matrix Problems

1.5 Steady-State Behavior
 1.5.1 Appropriate Solutions of the DARE
 1.5.2 Wiener Filters
 1.5.3 Convergence Results

1.6 Several Related Problems
 1.6.1 Adaptive RLS Filtering
 1.6.2 Linear Quadratic Control
 1.6.3 \textit{H}_\infty\ Estimation
 1.6.4 \textit{H}_\infty\ Adaptive Filtering
 1.6.5 \textit{H}_\infty\ Control
 1.6.6 Linear Algebra and Matrix Theory
2 Deterministic Least-Squares Problems

2.1 The Deterministic Least-Squares Criterion

2.2 The Classical Solutions

- **2.2.1 The Normal Equations**
- **2.2.2 Weighted Least-Squares Problems**
- **2.2.3 Statistical Assumptions on the Noise**

2.3 A Geometric Formulation: The Orthogonality Condition

- **2.3.1 The Projection Theorem in Inner Product Spaces**
- **2.3.2 Geometric Insights**
- **2.3.3 Projection Matrices**
- **2.3.4 An Application: Order-Recursive Least-Squares**

2.4 Regularized Least-Squares Problems

2.5 An Array Algorithm: The QR Method

2.6 Updating Least-Squares Solutions: RLS Algorithms

- **2.6.1 The RLS Algorithm**
- **2.6.2 An Array Algorithm for RLS**

2.7 Downdating Least-Squares Solutions

2.8 Some Variations of Least-Squares Problems

- **2.8.1 The Total Least-Squares Criterion**
- **2.8.2 Criteria with Bounds on Data Uncertainties**

2.9 Complements

2.9.1 Problems

2.9.2 On Systems of Linear Equations

3 Stochastic Least-Squares Problems

3.1 The Problem of Stochastic Estimation

3.2 Linear Least-Mean-Squares Estimators

- **3.2.1 The Fundamental Equations**
- **3.2.2 Stochastic Interpretation of Triangular Factorization**
- **3.2.3 Singular Data Covariance Matrices**
- **3.2.4 Nonzero-Mean Values and Centering**
- **3.2.5 Estimators for Complex-Valued Random Variables**

3.3 A Geometric Formulation

- **3.3.1 The Orthogonality Condition**
- **3.3.2 Examples**

3.4 Linear Models

- **3.4.1 Information Forms When \(R_x > 0 \) and \(R_z > 0 \)**
- **3.4.2 The Gauss-Markov Theorem**
- **3.4.3 Combining Estimators**
3.5 Equivalence to Deterministic Least-Squares

3.6 Complements

Problems

3.A Least-Mean-Squares Estimation

3.B Gaussian Random Variables

3.C Optimal Estimation for Gaussian Variables

4 THE INNOVATIONS PROCESS

4.1 Estimation of Stochastic Processes

4.1.1 The Fixed Interval Smoothing Problem

4.1.2 The Causal Filtering Problem

4.1.3 The Wiener-Hopf Technique

4.1.4 A Note on Terminology — Vectors and Gramians

4.2 The Innovations Process

4.2.1 A Geometric Approach

4.2.2 An Algebraic Approach

4.2.3 The Modified Gram-Schmidt Procedure

4.2.4 Estimation Given the Innovations Process

4.2.5 The Filtering Problem via the Innovations Approach

4.2.6 Computational Issues

4.3 Innovations Approach to Deterministic Least-Squares Problems

4.4 The Exponentially Correlated Process

4.4.1 Triangular Factorization of R

4.4.2 Finding L^{-1} and the Innovations

4.4.3 Innovations via the Gram-Schmidt Procedures

4.5 Complements

Problems

4.A Linear Spaces, Modules, and Gramians

5 STATE-SPACE MODELS

5.1 The Exponentially Correlated Process

5.1.1 Finite Interval Problems; Initial Conditions lor Stationarity

5.1.2 Innovations from the Process Model

5.2 Going Beyond the Stationary Case

5.2.1 Stationary Processes

5.2.2 Nonstationary Processes

5.3 Higher-Order Processes and State-Space Models

5.3.1 Autoregressive Processes

5.3.2 Handling Initial Conditions

5.3.3 State-Space Descriptions

5.3.4 The Standard State-Space Model

5.3.5 Examples of Other State-Space Models
7.7 Innovations Approach to the Wiener Filter 243
 7.7.1 The Pure Prediction Problem 245
 7.7.2 Additive White-Noise Problems 246

7.8 Vector Processes 247
7.9 Extensions of Wiener Filtering 248
7.10 Complements 250

7.A The Continuous-Time Wiener-Hopf Technique 262

8 RECURSIVE WIENER FILTERING 265

8.1 Time-Invariant State-Space Models 766
 8.1.1 Covariance Functions for Time-Invariant Models 266
 8.1.2 The Special Case of Stationary Processes 267
 8.1.3 Expressions for the \mathcal{z}-Spectrum 268

8.2 An Equivalence Class for Input Gramians 269

8.3 Canonical Spectral Factorization 272
 8.3.1 Unit-Circle Controllability Condition 272
 8.3.2 An Inertia Property 274
 8.3.3 Algebraic Riccati Equations and Spectral Factorization 275
 8.3.4 Appropriate Solutions of the DARE 276
 8.3.5 Canonical Spectral Factorization and Innovations Models 277
 8.3.6 A Digression: A Criterion for Positivity 279

8.4 Recursive Estimation Given State-Space Models 280
 8.4.1 Recursive Predictors 280
 8.4.2 Recursive State Predictors 281
 8.4.3 Recursive Smoothed Estimators 282

8.5 Factorization Given Covariance Data: Recursive Wiener Filters 283

8.6 Extension to Time-Variant Models 285

8.7 The Appendices 286

8.8 Complements 286
 Problems 287

8.A The Popov function 292

8.C The KYP and Related Lemmas 300

8.D Vector Spectral Factorization in Continuous Time 303

9 THE KALMAN FILTER 310

9.1 The Standard State-Space Model 310

9.2 The Kalman Filter Recursions for the Innovations 312
 9.2.1 Recursions for the Innovations 312
 9.2.2 $R_{e,i}$ and $K_{p,i}$ in Terms of P 314
 9.2.3 Recursion for P_i 316
 9.2.4 The Kalman Filter Recursions for the Innovations 317

9.2.5 Innovations Models for the Output Process 318
9.3 Recursions for Predicted and Filtered State Estimators
9.3.1 The Predicted Estimators 319
9.3.2 Schmidt’s Modification: Measurement and Time Updates 319
9.3.3 Recursions for Filtered Estimators 322
9.3.4 An Alternative Innovations Model 323
9.4 Triangular Factorizations of R_v and R_v^{-1}
9.5 An Important Special Assumption: $R_i > 0$
9.5.1 Simplifications for Correlated Noise Processes 325
9.5.2 Measurement Updates in Information Form 327
9.5.3 Existence of P_i^{-1} 329
9.5.4 Sequential Processing 329
9.5.5 Time Updates in Information Form ($Q_i > 0$) 331
9.5.6 A Recursion for P_i^{-1} 332
9.5.7 Summary of Results under Invertibility Conditions 332
9.6 Covariance-Based Filters
9.7 Approximate Nonlinear Filtering
9.7.1 A Linearized Kalman Filter 338
9.7.2 Schmidt Extended Kalman Filter (EKF) 339
9.7.3 The Iterated Schmidt EKF 341
9.7.4 Performance of the Approximate Filters 341
9.7.5 Other Schemes 342
9.8 Backwards Kalman Recursions
9.8.1 Backwards Markovian Representations of $\{y_t\}$ 342
9.8.2 Recursions for the Backwards Innovations Process 343
9.8.3 The Filtered Version of the Backwards Kalman Recursions 344
9.8.4 UDU^* Factorization of R_v 345
9.9 Complements
9.9.A Factorization of R_v using the MGS Procedure
9.9.B Factorization via Gramian Equivalence Classes

10 SMOOTHED ESTIMATORS

10.1 General Smoothing Formulas
10.2 Exploiting State-Space Structure
10.2.1 The Bryson-Frazier (BF) Formulas 373
10.2.2 Stochastic Interpretation of the Adjoint Variable 375
10.3 The Rauch-Tung-Striebel (RTS) Recursions
10.3.1 First Form of RTS Recursions 376
10.3.2 The Smoothing Errors are Backwards Markov 377
10.3.3 The Original Rauch-Tung-Striebel (RTS) Formulas 378
10.4 Two-Filter Formulas
10.4.1 General Two Filter Formulas 380
10.4.2 The Mayne and Fraser-Potter Formulas 381
10.4.3 Combined Estimators Derivation 383
10.5 The Hamiltonian Equations ($R_i > 0$) 385
10.6 Variational Origin of Hamiltonian Equations 387
10.7 Applications of Equivalence 389
 10.7.1 The Equivalent Stochastic Problem 389
 10.7.2 Solving the Stochastic Problem 390
 10.7.3 Solving the Deterministic Problem 390
 10.7.4 An Alternative Direct Solution 391
 10.7.5 MAP Estimation and a Deterministic Interpretation for the Kalman Filter 393
 10.7.6 The Deterministic Approach of Whittle 394
10.8 Complements 397
 Problems 397

11 FAST ALGORITHMS 406

11.1 The Fast (CKMS) Recursions 406
11.2 Two Important Cases 413
 11.2.1 Zero Initial Conditions 413
 11.2.2 Stationary Processes 413
11.3 Structured Time-Variant Systems 414
11.4 CKMS Recursions Given Covariance Data 416
11.5 Relation to Displacement Rank 418
11.6 Complements 421
 Problems 422

12 ARRAY ALGORITHMS 427

12.1 Review and Notations 428
 12.1.1 Notation 429
 12.1.2 Normalizations 430
 12.1.3 A Demonstration of Round-Off Error Effects 431
12.2 Potter's Explicit Algorithm for Scalar Measurement Update 432
12.3 Several Array Algorithms 433
 12.3.1 A Standing Assumption 433
 12.3.2 Time Updates 434
 12.3.3 Measurement Updates 435
 12.3.4 Predicted Estimators 437
 12.3.5 Filtered Estimators 438
 12.3.6 Estimator Update 438
 12.3.7 Operation Counts and Condensed Forms 440
12.4 Numerical Examples 440
 12.4.1 Triangularization via Givens Rotations 440
 12.4.2 Triangularization via Householder Transformations 442
 12.4.3 Triangularization via Square-Root Free Rotations 443
12.5 Derivations of the Array Algorithms 445
 12.5.1 The Time-Update Algorithm 445
 12.5.2 The Measurement-Update Algorithm 445
 12.5.3 Algorithm for the State Predictors 446
12.6 A Geometric Derivation of the Arrays
12.6.1 Predicted Form of the Arrays 448
12.6.2 Measurement Updates 451
12.6.3 Time Updates 452

12.7 Paige's Form of the Array Algorithm

12.8 Array Algorithms for the Information Forms
12.8.1 Information Array for the Measurement Update 453
12.8.2 Information Array for the Time Update 454
12.8.3 Alternative Derivation via Inversion of Covariance Forms 455
12.8.4 Derivation via Dualities When $R_i > 0$ and $Q_i > 0$ 456
12.8.5 The General Information Filter Form 457
12.8.6 A Geometric Derivation of the Information Filter Form 459

12.9 Array Algorithms for Smoothing
12.9.1 Bryson-Frazier Formulas in Array Form 460
12.9.2 Rauch-Tung-Striebel Formulas in Array Form 462
12.9.3 Two-Filter (or Mapne-Fraser) Array Formulas 462

12.10 Complements

Problems

12.A The UD Algorithm

12.B The Use of Schur and Condensed Forms

12.C Paige's Array Algorithm

13 FAST ARRAY ALGORITHMS

13.1 A Special Case: $P_0 = 0$
13.1.1 Unitary Equivalence and an Alternative Derivation 483

13.2 A General Fast Array Algorithm

13.3 From Explicit Equations to Array Algorithms

13.4 Structured Time-Variant Systems

13.5 Complements

Problems

13.A Combining Displacement and State-Space Structures

14 ASYMPTOTIC BEHAVIOR

14.1 Introduction

14.1.1 Time-Invariant State-Space Models 499

14.1.2 Convergence for Indefinite Initial Conditions 500

14.1.3 Convergence for Unstable F 502

14.1.4 Why Study Models with Unstable F? 502

14.2 Solutions of the DARE

14.3 Summary of Results

14.4 Riccati Solutions for Different Initial Conditions

14.5 Convergence Results

14.5.1 A Sufficiency Result 513

14.5.2 Simplified Convergence Conditions 525

14.5.3 The Dual DARE and Stabilizablity 530
14.6 The Case of Stable Systems
14.7 The Case of $S \neq 0$
14.8 Exponential Convergence of the Fast Recursions
14.9 Complements

Problems

15 DUALITY AND EQUIVALENCE IN ESTIMATION AND CONTROL

15.1 Dual Bases
15.1.1 Algebraic Specification 557
15.1.2 Geometric Specification 557
15.1.3 Some Reasons for Introducing Dual Bases 558
15.1.4 Estimators via the Dual Basis 559

15.2 Application to Linear Models
15.2.1 Linear Models and Dual Bases 560
15.2.2 Application to the Measurement Update Problem 562
15.2.3 Application to State-Space Models 563

15.3 Duality and Equivalence Relationships
15.3.1 Equivalent Stochastic and Deterministic Problems 565
15.3.2 Dual Stochastic and Deterministic Problems 566
15.3.3 Summary of Duality and Equivalence Results 567
15.3.4 A Deterministic Optimization Problem via Duality 569
15.3.5 Application to Linear Quadratic Tracking 573
15.3.6 Application to Linear Quadratic Regulation 576

15.4 Duality under Causality Constraints
15.4.1 Causal Estimation 577
15.4.2 Anticausal Dual Problem 579
15.4.3 Anticausal Estimation and Causal Duality 580
15.4.4 Application to Stochastic Quadratic Control 581

15.5 Measurement Constraints and a Separation Principle
15.5.1 A Separation Principle with Causal Dependence on Data 586
15.5.2 A Separation Principle with Anticausal Dependence on Data 591
15.5.3 Application to Measurement Feedback Control 592

15.6 Duality in the Frequency Domain
15.6.1 Duality without Constraints 594
15.6.2 Duality with Causality Constraints 595
15.6.3 Application to the Infinite-Horizon LQR Problem 597

15.7 Complementary State-Space Models
15.7.1 The Standard State-Space Model 599
15.7.2 Backwards Complementary Models 600
15.7.3 Direct Derivation of the Hamiltonian Equations 603
15.7.4 Forwards Complementary Models 604
15.7.5 The Mixed Complementary Model 608
15.7.6 An Application to Smoothing 608
15.8 Complements
Problems

16 CONTINUOUS-TIME STATE-SPACE ESTIMATION

16.1 Continuous-Time Models
16.1.1 Standard Continuous-Time Models 618
16.1.2 Discrete-Time Approximations 618
16.1.3 An Application: State-Variance Recursions 621
16.2 The Kalman Filter Equations given State-Space and Covariance Models
16.3 Some Examples
16.4 Direct Solution using the Innovations Process
16.4.1 The Innovations Process 630
16.4.2 The Innovations Approach 633
16.5 Smoothed Estimators
16.6 Fast Algorithms for Time-Invariant Models
16.7 Asymptotic Behavior
16.7.1 Positive-Semi-Definite Solutions of the CARE 642
16.7.2 Convergence Results 642
16.7.3 The Dual CARE 646
16.7.4 Exponential Convergence of the Fast Filtering Equations 646
16.8 The Steady-State Filter
16.9 Complements
Problems

16.A Backwards Markovian Models
16.A.1 Backwards Models via Time Reversal 672
16.A.2 The Backwards-Time Kalman Filters 674
16.A.3 Application to Smoothing Problems 674

17 A SCATTERING THEORY APPROACH

17.1 A Generalized Transmission-Line Model
17.1.1 Identifying the Macroscopic Scattering Operators 680
17.1.2 Identifying the Signals 683
17.2 Backward Evolution
17.3 The Star Product
17.3.1 Evolution Equations 688
17.3.2 General Initial Conditions 690
17.3.3 Chain Scattering or Transmission Matrices 692
17.4 Various Riccati Formulas
17.4.1 Incorporating Boundary Conditions 693
17.4.2 Partitioned Formulas 695
17.4.3 General Changes in the Boundary Conditions 696
17.4.4 Smoothing as an Extended Filtering Problem 698
17.5 Homogeneous Media: Time-Invariant Models
17.5.1 A Doubling Algorithm 702
17.5.2 Generalized Stokes Identities 703
17.6 Discrete-Time Scattering Formulation
 17.6.1 Some Features of Discrete-Time Scattering 708
 17.6.2 The Scattering Parameters 709
 17.6.3 The Kalman Filter and Related Identities 712
 17.6.4 General Change of Initial Conditions 713
 17.6.5 Backward Evolution 715
 17.6.6 Homogeneous Media 716

17.7 Further Work 718
17.8 Complements 719
 Problems 719

17.A A Complementary State-Space Model 723

► A USEFUL MATRIX RESULTS 725

A.1 Some Matrix Identities 725
A.2 Kronecker Products 731
A.3 The Reduced and Full QR Decompositions 732
A.4 The Singular Value Decomposition and Applications 734
A.5 Basis Rotations 738
A.6 Complex Gradients and Hessians 740
A.7 Further Reading 742

► B UNITARY AND I-UNITARY TRANSFORMATIONS 743

B.1 Householder Transformations 743
B.2 Circular or Givens Rotations 747
B.3 Fast Givens Transformations 749
B.4 J-Unitary Householder Transformations 752
B.5 Hyperbolic Givens Rotations 754
B.6 Some Alternative Implementations 756

► C SOME SYSTEM THEORY CONCEPTS 759

C.1 Linear State-Space Models 759
C.2 State-Transition Matrices 760
C.3 Controllability and Stabilizability 762
C.4 Observability and Detectability 764
C.5 Minimal Realizations 765

► D LYAPUNOV EQUATIONS 766

D.1 Discrete-Time Lyapunov Equations 766
D.2 Continuous-Time Lyapunov Equations 768
D.3 Internal Stability 770
E.1 Overview of DARE
E.2 A Linear Matrix Inequality
E.3 Existence of Solutions to the DARE
E.4 Properties of the Maximal Solution
E.5 Main Result
E.6 Further Remarks
E.7 The Invariant Subspace Method
E.8 The Dual DARE
E.9 The CARE
E.10 Complements

F.1 Motivation
F.2 Two Fundamental Properties
F.3 A Generalized Schur Algorithm
F.4 The Classical Schur Algorithm
F.5 Combining Displacement and State-Space Structures
The problem of estimating the values of a random (or stochastic) process given observations of a related random process is encountered in many areas of science and engineering, e.g., communications, control, signal processing, geophysics, econometrics, and statistics. Although the topic has a rich history, and its formative stages can be attributed to illustrious investigators such as Laplace, Gauss, Legendre, and others, the current high interest in such problems began with the work of H. Wold, A. N. Kolmogorov, and N. Wiener in the late 1930s and early 1940s. N. Wiener in particular stressed the importance of modeling not just "noise" but also "signals" as random processes. His thought-provoking originally classified 1942 report, released for open publication in 1949 and now available in paperback form under the title *Time Series Analysis*, is still very worthwhile background reading.

As with all deep subjects, the extensions of these results have been very far-reaching as well. A particularly important development arose from the incorporation into the theory of multichannel state-space models. Though there were various earlier partial intimations and explorations, especially in the work of R. L. Stratonovich in the former Soviet Union, the chief credit for the explosion of activity in this direction goes to R. E. Kalman, who also made important related contributions to linear systems, optimal control, passive systems, stability theory, and network synthesis.

In fact, least-squares estimation is one of those happy subjects that is interesting not only in the richness and scope of its results, but also because of its mutually beneficial connections with a host of other (often apparently very different) subjects. Thus, beyond those already named, we may mention connections with radiative transfer and scattering theory, linear algebra, matrix and operator theory, orthogonal polynomials, moment problems, inverse scattering problems, interpolation theory, decoding of Reed–Solomon and BCH codes, polynomial factorization and root distribution problems, digital filtering, spectral analysis, signal detection, martingale theory, the so-called \mathcal{H}_∞ theories of estimation and control, least-squares and adaptive filtering problems, and many others. We can surely apply to it the lines written by William Shakespeare about another (beautiful) subject:

"Age does not wither her, nor custom stale,
Her infinite variety."
Though we were originally tempted to cover a wider range, many reasons led us to focus this volume largely on estimation problems for finite-dimensional linear systems with state-space models, covering most aspects of an area now generally known as Wiener and Kalman filtering theory. Three distinctive features of our treatment are the pervasive use of a geometric point of view, the emphasis on the numerically favored square-root/array forms of many algorithms, and the emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filters estimation, and control. These features are generally absent in most prior treatments ostensibly on the grounds that they are too abstract and complicated. It is our hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited.

The material presented in this book can be broadly categorized into the following topics:

- **Introduction and Foundations**
 - Chapter 1: Overview
 - Chapter 2: Deterministic Least-Squares Problems
 - Chapter 3: Stochastic Least-Squares Problems
 - Chapter 4: The Innovations Process
 - Chapter 5: State-Space Models

- **Estimation of Stationary Processes**
 - Chapter 6: Innovations for Stationary Processes
 - Chapter 7: Wiener Theory for Scalar Processes
 - Chapter 8: Recursive Wiener Filters

- **Estimation of Nonstationary Processes**
 - Chapter 9: The Kalman Filter
 - Chapter 10: Smoothed Estimators

- **Fast and Array Algorithms**
 - Chapter 11: Fast Algorithms
 - Chapter 12: Array Algorithms
 - Chapter 13: Fast Array Algorithms

- **Continuous-Time Estimation**
 - Chapter 16: Continuous-Time State-Space Estimation

- **Advanced Topics**
 - Chapter 14: Asymptotic Behavior
 - Chapter 15: Duality-and Equivalence in Estimation and Control
 - Chapter 17: A Scattering Theory Approach
Being intended for a graduate-level course, the book assumes familiarity with basic concepts from matrix theory, linear algebra, linear system theory, and random processes. Four appendices at the end of the book provide the reader with background material in all these areas.

There is ample material in this book for the instructor to fashion a course to his or her needs and tastes. The authors have used portions of this book as the basis for one-quarter first-year graduate level courses at Stanford University, the University of California at Los Angeles, and the University of California at Santa Barbara; the students were expected to have had some exposure to discrete-time and state-space theory. A typical course would start with Secs. 1.1–1.2 as an overview (perhaps omitting the matrix derivations), with the rest of Ch. 1 left for a quick reading (and re-reading from time to time), most of Chs. 2 and 3 (focusing on the geometric approach) on the basic deterministic and stochastic least-squares problems, Ch. 4 on the innovations process. Secs. 6.4–6.5 and 7.3–7.7 on scalar Wiener filtering, Secs. 9.1–9.3, 9.5, and 9.7 on Kalman filtering. Secs. 10.1–10.2 as an introduction to smoothing, Secs. 12.1–12.5 and 13.1–13.4 on array algorithms, and Secs. 16.1–16.4 and 16.6 on continuous-time problems.

More advanced students and researchers would pursue selections of material from Sec. 2.5, Chs. 8, 11, 14, 15, and 17, and Apps. E and F. These cover, among other topics, least-squares problems with uncertain data, the problem of canonical spectral factorization, convergence of the Kalman filter, the algebraic Riccati equation, duality, backwards-time and complementary models, scattering, etc. Those wishing to go on to the more recent \mathcal{H}_∞ theory can find a treatment closely related to the philosophy of the current book (cf. Sec. 1.6) in the research monograph of Hassibi, Sayed, and Kailath (1999).

A feature of the book is a collection of nearly 300 problems, several of which complement the text and present additional results and insights. However, there is little discussion of real applications or of the error and sensitivity analyses required for them. The main issue in applications is constructing an appropriate model, or actually a set of models, which are further analyzed and then refined by using the results and algorithms presented in this book. Developing good models and analyzing them effectively requires not only a good appreciation of the actual application, but also a good understanding of the theory, at both an analytical and intuitive level. It is the latter that we have tried to achieve here; examples of successful applications have to be sought in the literature, and some references are provided to this end.

Acknowledgments

We are of course also deeply indebted to the many researchers and authors in a beautiful field. Partial acknowledgment is evident through the citations and references, while the list of the latter is quite long, we apologize for omissions and inadequacies arising from the limitations of our knowledge and our energy. Nevertheless, we would be remiss not to explicitly mention the inspiration and pleasure we have gained from studying the papers and books of N. Wiener, R. E. Kalman, and P. Whittle.

Major support for the many years of research that led to this book was provided by the Mathematics Division of the Air Force Office of Scientific Research and the Joint Services Electronics Program, by the Defense Advanced Research Projects Agency, and by the National Science Foundation. Finally, we like to thank Bernard Goodwin and Tom Robbins, as well as the staff of Prentice Hall, for their patience and other contributions to this project.

T. K.
Stanford
A. H. S.
Westwood
B. H.
Murray Hill