TRACKING AND KALMAN FILTERING MADE EASY

ELI BROOKNER
Consulting Scientist
Raytheon Comp.
Sudbury, MA
Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 1998 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-22419-7

This title is also available in print as ISBN 0-471-18407-1.

For more information about Wiley products, visit our web site at www.Wiley.com.
To Larry and Vera,
Richard and Connie,
and Daniel, the little miracle
CONTENTS

PREFACE xiii

ACKNOWLEDGMENT xxi

PART I TRACKING, PREDICTION, AND SMOOTHING BASICS

1 g–h and g–h–k Filters 3
 1.1 Why Tracking and Prediction are Needed in a Radar 3
 1.2 g–h Filters 14
 1.2.1 Simple Heruistic Derivation of g–h Tracking and Prediction Equations 14
 1.2.2 α–β Filter 23
 1.2.3 Other Special Types of Filters 23
 1.2.4 Important Properties of g–h Tracking Filters 24
 1.2.4.1 Steady-State Performance for Constant-Velocity Target 24
 1.2.4.2 For What Conditions is the Constant-Velocity Assumption Reasonable 24
 1.2.4.3 Steady-State Response for Target with Constant Acceleration 25
 1.2.4.4 Tracking Errors due to Random Range Measurement Error 27
 1.2.4.5 Balancing of Lag Error and rms Prediction Error 27
1.2.5 Minimization of Transient Error (Benedict–Bordner Filter) 29
1.2.6 New Approach to Finding Optimum \(g-h\) Tracking Filters (The Critically Damped \(g-h\) Filter) 32
1.2.7 \(g-h\) Filter Examples 40
1.2.8 Circuit Diagram of General \(g-h\) Filter 46
1.2.9 Stability of Constant \(g-h\) Filter 47
1.2.10 Track Initiation 47
1.3 \(g-h-k\) Filter 51
1.4 Tracking in Multidimensions 59
1.5 Selection of Coordinates for Tracking Filter 60

2 Kalman Filter
2.1 Two-State Kalman Filter 64
2.2 Reasons for Using the Kalman Filter 66
2.3 Properties of Kalman Filter 68
2.4 Kalman Filter in Matrix Notation 69
2.5 Derivation of Minimum-Variance Equation 77
 2.5.1 First Derivation 77
 2.5.2 Second Derivation 79
2.6 Exact Derivation of \(r\)-Dimensional Kalman Filter 80
2.7 Table Lookup Approximation to the Kalman Filter 84
2.8 Asquith–Friedland Steady-State \(g-h\) Kalman Filter 84
2.9 Singer \(g-h-k\) Kalman Filter 88
2.10 Convenient Steady-State \(g-h-k\) Filter Design Curves 95
2.11 Selection of Tracking Filter 104

3 Practical Issues for Radar Tracking
3.1 Track Initiation and Clutter Rejection 111
 3.1.1 Use of Track Initiation to Eliminate Clutter 111
 3.1.2 Clutter Rejection and Observation-Merging Algorithms for Reducing Track Initiation Load 116
 3.1.2.1 Moving-Target Dector 117
 3.1.2.2 Observation Merging (Redundancy-Elimination, Clustering) 120
 3.1.3 Editing for Inconsistencies 121
 3.1.4 Combined Clutter Suppression and Track Initiation 121
3.2 Track-Start and Track-Drop Rules 127
3.3 Data Association 127
 3.3.1 Nearest-Neighbor Approach 127
 3.3.2 Other Association Approaches 129
3.4 Track-While-Scan System 130
3.5 Tracking with a Chirp Waveform 132
3.5.1 Chirp Waveform, Pulse Compression, Match Filtering of Chirp Waveform, and Pulse Compression

- **Matched Filter**: 137
- **Alternate Way to View Pulse Compression and Pulse Coding**: 137
- **Affect of Tracking with a Chirp Waveform**: 141
- **Range–Doppler Ambiguity Problem of Chirp Waveform**: 141

3.5.2 Effect of Using Chirp Waveform on Tracker Filtering Accuracy**: 146

PART II LEAST-SQUARES FILTERING, VOLTAGE PROCESSING, ADAPTIVE ARRAY PROCESSING, AND EXTENDED KALMAN FILTER

4 Least-Squares and Minimum-Variance Estimates for Linear Time-Invariant Systems

- **General Least-Squares Estimation Results**: 155
- **Geometric Derivation of Least-Squares Solution**: 167
- **Orthonormal Transformation and Voltage-Processing (Square-Root) Method for LSE**: 174
- **Adaptive Nulling, the Orthonormal Transformation, and the LSE**: 188
- **Minimum-Variance Estimate**: 200

5 Fixed-Memory Polynomial Filter

- **Introduction**: 205
- **Direct Approach (Using Nonorthogonal mth-Degree Polynomial Fit)**: 206
- **Discrete Orthogonal Legendre Polynomial Approach**: 208
- **Representation of Polynomial Fit in Terms of Its Derivatives (State Variable Representation of Polynomial Fit in Terms of Process Derivatives)**: 212
- **Representation of Least-Squares Estimate in Terms of Derivative State Vector**: 214
- **Variance of Least-Squares Polynomial Estimate**: 217
- **Simple Example**: 219
- **Dependence of Covariance on L, T, m, and h**: 219
- **Systematic Errors (Bias, Lag, or Dynamic Error)**: 225
- **Balancing Systematic and Random Estimation Errors**: 229
- **Trend Removal**: 230
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Expanding-Memory (Growing-Memory) Polynomial Filters</td>
<td>233</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>233</td>
</tr>
<tr>
<td>6.2</td>
<td>Extrapolation from Fixed-Memory Filter Results</td>
<td>234</td>
</tr>
<tr>
<td>6.3</td>
<td>Recursive Form</td>
<td>234</td>
</tr>
<tr>
<td>6.4</td>
<td>Stability</td>
<td>236</td>
</tr>
<tr>
<td>6.5</td>
<td>Track Initiation</td>
<td>236</td>
</tr>
<tr>
<td>6.6</td>
<td>Variance Reduction Factor</td>
<td>237</td>
</tr>
<tr>
<td>6.7</td>
<td>Systematic Errors</td>
<td>238</td>
</tr>
<tr>
<td>7</td>
<td>Fading-Memory (Discounted Least-Squares) Filter</td>
<td>239</td>
</tr>
<tr>
<td>7.1</td>
<td>Discounted Least-Squares Estimate</td>
<td>239</td>
</tr>
<tr>
<td>7.2</td>
<td>Orthogonal Laguerre Polynomial Approach</td>
<td>240</td>
</tr>
<tr>
<td>7.3</td>
<td>Stability</td>
<td>244</td>
</tr>
<tr>
<td>7.4</td>
<td>Variance Reduction Factors</td>
<td>244</td>
</tr>
<tr>
<td>7.5</td>
<td>Comparison with Fixed-Memory Polynomial Filter</td>
<td>245</td>
</tr>
<tr>
<td>7.6</td>
<td>Track Initiation</td>
<td>248</td>
</tr>
<tr>
<td>7.7</td>
<td>Systematic Errors</td>
<td>251</td>
</tr>
<tr>
<td>7.8</td>
<td>Balancing the Systematic and Random Prediction Error</td>
<td>251</td>
</tr>
<tr>
<td>8</td>
<td>General Form for Linear Time-Invariant System</td>
<td>252</td>
</tr>
<tr>
<td>8.1</td>
<td>Target Dynamics Described by Polynomial as a Function of Time</td>
<td>252</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Introduction</td>
<td>252</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Linear Constant-Coefficient Differential Equation</td>
<td>253</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Constant-Coefficient Linear Differential Vector Equation for State Vector $X(t)$</td>
<td>254</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Constant-Coefficient Linear Differential Vector Equation for Transition Matrix Φ</td>
<td>256</td>
</tr>
<tr>
<td>8.2</td>
<td>More General Model Consisting of the Sum of The Product of Polynomials and Exponentials</td>
<td>258</td>
</tr>
<tr>
<td>9</td>
<td>General Recursive Minimum-Variance Growing-Memory Filter (Bayes and Kalman Filters without Target Process Noise)</td>
<td>260</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>260</td>
</tr>
<tr>
<td>9.2</td>
<td>Bayes Filter</td>
<td>261</td>
</tr>
<tr>
<td>9.3</td>
<td>Kalman Filter (Without Process Noise)</td>
<td>262</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison of Bayes and Kalman Filters</td>
<td>262</td>
</tr>
<tr>
<td>9.5</td>
<td>Extension to Multiple Measurement Case</td>
<td>263</td>
</tr>
</tbody>
</table>
10 Voltage Least-Squares Algorithms Revisited 264
 10.1 Computation Problems 264
 10.2 Orthogonal Transformation of Least-Squares Estimate Error 267
 10.2.1 Physical Interpretation of Orthogonal Transformation 271
 10.2.2 Physical Interpretation of U 275
 10.2.3 Reasons the Square-Root Procedure Provides Better Accuracy 278
 10.2.4 When and Why Inaccuracies Occur 280

11 Givens Orthonormal Transformation 283
 11.1 The Transformation 283
 11.2 Example 295
 11.3 Systolic Array Implementation 298
 11.3.1 Systolic Array 298
 11.3.2 CORDIC Algorithm 307

12 Householder Orthonormal Transformation 315
 12.1 Comparison of Householder and Givens Transformations 315
 12.2 First Householder Transformation 317
 12.3 Second and Higher Order Householder Transformations 320

13 Gram–Schmidt Orthonormal Transformation 322
 13.1 Classical Gram–Schmidt Orthonormal Transformation 322
 13.2 Modified Gram–Schmidt Orthonormal Transformation 333

14 More on Voltage-Processing Techniques 339
 14.1 Comparison of Different Voltage Least-Squares Algorithm Techniques 339
 14.2 QR Decomposition 342
 14.3 Sequential Square-Root (Recursive) Processing 343
 14.4 Equivalence between Voltage-Processing Methods and Discrete Orthogonal Legendre Polynomial Approach 345
 14.5 Square-Root Kalman Filters 353

15 Linear Time-Variant System 354
 15.1 Introduction 354
 15.2 Dynamic Model 355
 15.3 Transition Matrix Differential Equation 355
16 Nonlinear Observation Scheme and Dynamic Model (Extended Kalman Filter) 357
 16.1 Introduction 357
 16.2 Nonlinear Observation Scheme 357
 16.3 Nonlinear Dynamic Model 360

17 Bayes Algorithm with Iterative Differential Correction for Nonlinear Systems 367
 17.1 Determination of Updated Estimates 367
 17.2 Extension to Multiple Measurement Case 370
 17.3 Historical Background 374

18 Kalman Filter Revisited 375
 18.1 Introduction 375
 18.2 Kalman Filter Target Dynamic Model 375
 18.3 Kalman’s Original Results 376

Appendix Comparison of Swerling’s and Kalman’s Formulations of Swerling–Kalman Filters 383

Problems 388

Symbols and Acronyms 402

Solution to Selected Problems 419

References 456

Index 465
PREFACE

At last a book that hopefully will take the mystery and drudgery out of the $g-h$, $\alpha-\beta$, $g-h-k$, $\alpha-\beta-\gamma$ and Kalman filters and makes them a joy. Many books written in the past on this subject have been either geared to the tracking filter specialist or difficult to read. This book covers these filters from very simple physical and geometric approaches. Extensive, simple and useful design equations, procedures, and curves are presented. These should permit the reader to very quickly and simply design tracking filters and determine their performance with even just a pocket calculator. Many examples are presented to give the reader insight into the design and performance of these filters. Extensive homework problems and their solutions are given. These problems form an integral instructional part of the book through extensive numerical design examples and through the derivation of very key results stated without proof in the text, such as the derivation of the equations for the estimation of the accuracies of the various filters [see Note (1) on page 388]. Covered also in simple terms is the least-squares filtering problem and the orthonormal transformation procedures for doing least-squares filtering.

The book is intended for those not familiar with tracking at all as well as for those familiar with certain areas who could benefit from the physical insight derived from learning how the various filters are related, and for those who are specialists in one area of filtering but not familiar with other areas covered. For example, the book covers in extremely simple physical and geometric terms the Gram–Schmidt, Givens, and Householder orthonormal transformation procedures for doing the filtering and least-square estimation problem. How these procedures reduce sensitivity to computer round-off errors is presented. A simple explanation of both the classical and modified Gram–Schmidt procedures is given. Why the latter is less sensitive to round-off errors is explained in
physical terms. For the first time the discrete-time orthogonal Legendre polynomial (DOLP) procedure is related to the voltage-processing procedures. Important real-world issues such as how to cope with clutter returns, elimination of redundant target detections (observation-merging or clustering), editing for inconsistent data, track-start and track-drop rules, and data association (e.g., the nearest-neighbor approach and track before detection) are covered in clear terms. The problem of tracking with the very commonly used chirp waveform (a linear-frequency-modulated waveform) is explained simply with useful design curves given. Also explained is the important moving-target detector (MTD) technique for canceling clutter.

The Appendix gives a comparison of the Kalman filter (1960) with the Swerling filter (1959). This Appendix is written by Peter Swerling. It is time for him to receive due credit for his contribution to the “Kalman–Swerling” filter.

The book is intended for home study by the practicing engineer as well as for use in a course on the subject. The author has successfully taught such a course using the notes that led to this book. The book is also intended as a design reference book on tracking and estimation due to its extensive design curves, tables, and useful equations.

It is hoped that engineers, scientists, and mathematicians from a broad range of disciplines will find the book very useful. In addition to covering and relating the $g-h$, $\alpha-\beta$, $g-h-k$, $\alpha-\beta-\gamma$, Kalman filters, and the voltage-processing methods for filtering and least-squares estimation, the use of the voltage-processing methods for sidelobe canceling and adaptive-array processing are explained and shown to be the same mathematically as the tracking and estimated problems. The massively parallel systolic array sidelobe canceler processor is explained in simple terms. Those engineers, scientists, and mathematicians who come from a mathematical background should get a good feel for how the least-squares estimation techniques apply to practical systems like radars. Explained to them are matched filtering, chirp waveforms, methods for dealing with clutter, the issue of data association, and the MTD clutter rejection technique. Those with an understanding from the radar point of view should find the explanation of the usually very mathematical Gram–Schmidt, Givens, and Householder voltage-processing (also called square-root) techniques very easy to understand. Introduced to them are the important concepts of ill-conditioning and computational accuracy issues. The classical Gram–Schmidt and modified Gram–Schmidt procedures are covered also, as well as why one gives much more accurate results. Hopefully those engineers, scientists, and mathematicians who like to read things for their beauty will find it in the results and relationships given here. The book is primarily intended to be light reading and to be enjoyed. It is a book for those who need or want to learn about filtering and estimation but prefer not to plow through difficult esoteric material and who would rather enjoy the experience. We could have called it “The Joy of Filtering.”

The first part of the text develops the $g-h$, $g-h-k$, $\alpha-\beta$, $\alpha-\beta-\gamma$, and Kalman filters. Chapter 1 starts with a very easy heuristic development of $g-h$
filters for a simple constant-velocity target in “lineland” (one-dimensional space, in contrast to the more complicated two-dimensional “flatland”). Section 1.2.5 gives the \(g-h \) filter, which minimizes the transient error resulting from a step change in the target velocity. This is the well-known Benedict–Bordner filter. Section 1.2.6 develops the \(g-h \) filter from a completely different, common-sense, physical point of view, that of least-squares fitting a straight line to a set of range measurements. This leads to the critically damped (also called discounted least-squares and fading-memory) filter. Next, several example designs are given. The author believes that the best way to learn a subject is through examples, and so numerous examples are given in Section 1.2.7 and in the homework problems at the end of the book.

Section 1.2.9 gives the conditions (on \(g \) and \(h \)) for a \(g-h \) filter to be stable (these conditions are derived in problem 1.2.9-1). How to initiate tracking with a \(g-h \) filter is covered in Section 1.2.10. A filter (the \(g-h-k \) filter) for tracking a target having a constant acceleration is covered in Section 1.3. Coordinate selection is covered in Section 1.5.

The Kalman filter is introduced in Chapter 2 and related to the Benedict–Bordner filter, whose equations are derived from the Kalman filter in Problem 2.4-1. Reasons for using the Kalman filter are discussed in Section 2.2, while Section 2.3 gives a physical feel for how the Kalman filter works in an optimum way on the data to give us a best estimate. The Kalman filter is put in matrix form in Section 2.4, not to impress, but because in this form the Kalman filter applies way beyond lineland—to multidimensional space.

Section 2.6 gives a very simple derivation of the Kalman filter. It requires differentiation of a matrix equation. But even if you have never done differentiation of a matrix equation, you will be able to follow this derivation. In fact, you will learn how to do matrix differentiation in the process! If you had this derivation back in 1958 and told the world, it would be your name filter instead of the Kalman filter. You would have gotten the IEEE Medal of Honor and $20,000 tax-free and the $340,000 Kyoto Prize, equivalent to the Nobel Prize but also given to engineers. You would be world famous.

In Section 2.9 the Singer \(g-h-k \) Kalman filter is explained and derived. Extremely useful \(g-h-k \) filter design curves are presented in Section 2.10 together with an example in the text and many more in Problems 2.10-1 through 2.10-17. The issues of the selection of the type of \(g-h \) filter is covered in Section 2.11.

Chapter 3 covers the real-world problem of tracking in clutter. The use of the track-before-detect retrospective detector is described (Section 3.1.1). Also covered is the important MTD clutter suppression technique (Section 3.1.2.1). Issues of eliminating redundant detections by observation merging or clustering are covered (Section 3.1.2.2) as well as techniques for editing out inconsistent data (Section 3.1.3), combining clutter suppression with track initiation (Section 3.1.4), track-start and track-drop rules (Section 3.2), data association (Section 3.3), and track-while-scan systems (Section 3.4).
In Section 3.5 a tutorial is given on matched filtering and the very commonly used chirp waveform. This is followed by a discussion of the range bias error problem associated with using this waveform and how this bias can be used to advantage by choosing a chirp waveform that predicts the future—a fortune-telling radar.

The second part of the book covers least-squares filtering, its power and voltage-processing approaches. Also, the solution of the least-squares filtering problem via the use of the DOLP technique is covered and related to voltage-processing approaches. Another simple derivation of the Kalman filter is presented and additional properties of the Kalman filter given. Finally, how to handle nonlinear measurement equations and nonlinear equations of motion are discussed (the extended Kalman filter).

Chapter 4 starts with a simple formulation of the least-squares estimation problem and gives its power method solution, which is derived both by simple differentiation (Section 4.1) and by simple geometry considerations (Section 4.2). This is followed by a very simple explanation of the Gram–Schmidt voltage-processing (square-root) method for solving the least-squares problem (Section 4.3). The voltage-processing approach has the advantage of being much less sensitive to computer round-off errors, with about half as many bits being required to achieve the same accuracy. The voltage-processing approach has the advantage of not requiring a matrix inverse, as does the power method.

In Section 4.4, it is shown that the mathematics for the solution of the tracking least-squares problem is identical to that for the radar and communications sidelobe canceling and adaptive nulling problems. Furthermore, it is shown how the Gram–Schmidt voltage-processing approach can be used for the sidelobe canceling and adaptive nulling problem.

Often the accuracy of the measurements of a tracker varies from one time to another. For this case, in fitting a trajectory to the measurements, one would like to make the trajectory fit closer to the accurate data. The minimum-variance least-squares estimate procedure presented in Section 4.5 does this. The more accurate the measurement, the closer the curve fit is to the measurement.

The fixed-memory polynomial filter is covered in Chapter 5. In Section 5.3 the DOLP approach is applied to the tracking and least-squares problem for the important cases where the target trajectory or data points (of which there are a fixed number \(L + 1\)) are approximated by a polynomial fit of some degree \(m\). This method also has the advantage of not requiring a matrix inversion (as does the power method of Section 4.1). Also, its solution is much less sensitive to computer round-off errors, half as many bits being required by the computer.

The convenient and useful representation of the polynomial fit of degree \(m\) in terms of the target equation motion derivatives (first \(m\) derivatives) is given in Section 5.4. A useful general solution to the DOLP least-squares estimate for a polynomial fit that is easily solved on a computer is given in Section 5.5. Sections 5.6 through 5.10 present the variance and bias errors for the least-squares solution and discusses how to balance these errors. The important
method of trend removal to lower the variance and bias errors is discussed in Section 5.11.

In Chapter 5, the least-squares solution is based on the assumption of a fixed number \(L + 1 \) of measurements. In this case, when a new measurement is made, the oldest measurement is dropped in order to keep the number measurements on which the trajectory estimate is based equal to the fixed number \(L + 1 \). In Chapter 6 we consider the case when a new measurement is made, we no longer throw away the oldest data. Such a filter is called a growing-memory filter. Specifically, an \(m \)th-degree polynomial is fitted to the data set, which now grows with time, that is, \(L \) increases with time. This filter is shown to lead to the easy-to-use recursive growing-memory \(g-h \) filter used for track initiation in Section 1.2.10. The recursive \(g-h-k \) \((m = 2)\) and \(g-h-k-l \) \((m = 3)\) versions of this filter are also presented. The issues of stability, track initiation, root-mean-square (rms) error, and bias errors are discussed.

In Chapter 7 the least-squares polynomial fit to the data is given for the case where the error of the fit is allowed to grow the older the data. In effect, we pay less and less attention to the data the older it is. This type of filter is called a fading-memory filter or discounted least-squares filter. This filter is shown to lead to the useful recursive fading-memory \(g-h \) filter of Section 1.2.6 when the polynomial being fitted to is degree \(m = 1 \). Recursive versions of this filter that apply to the case when the polynomial being fitted has degree \(m = 2, 3, 4 \) are also given. The issues of stability, rms error, track initiation, and equivalence to the growing-memory filters are also covered.

In Chapter 8 the polynomial description of the target dynamics is given in terms of a linear vector differential equation. This equation is shown to be very useful for obtaining the transition matrix for the target dynamics by either numerical integration or a power series in terms of the matrix coefficient of the differential equation.

In Chapter 9 the Bayes filter is derived (Problem 9.4-1) and in turn from it the Kalman filter is again derived (Problem 9.3-1). In Chapters 10 through 14 the voltage least-squares algorithms are revisited. The issues of sensitivity to computer round-off error in obtaining the inverse of a matrix are elaborated in Section 10.1. Section 10.2 explains physically why the voltage least-squares algorithm (square-root processing) reduces the sensitivity to computer round-off errors. Chapter 11 describes the Givens orthonormal transformation voltage algorithm. The massively parallel systolic array implementation of the Givens algorithm is detailed in Section 11.3. This implementation makes use of the CORDIC algorithm used in the Hewlett-Packard hand calculators for trigonometric computations.

The Householder orthonormal transformation voltage algorithm is described in Chapter 12. The Gram–Schmidt orthonormal transformation voltage algorithm is revisited in Chapter 13, with classical and modified versions explained in simple terms. These different voltage least-squares algorithms are compared in Section 14.1 and to \(QR \) decomposition in Section 14.2. A recursive version is developed in Section 14.3. Section 14.4 relates these voltage-
processing orthonormal transformation methods to the DOLP approach used in Section 5.3 for obtaining a polynomial fit to data. The two methods are shown to be essentially identical. The square-root Kalman filter, which is less sensitive to round-off errors, is discussed in Section 14.5.

Up until now the deterministic part of the target model was assumed to be time invariant. For example, if a polynomial fit of degree \(m \) was used for the target dynamics, the coefficients of this polynomial fit are constant with time. Chapter 15 treats the case of time-varying target dynamics.

The Kalman and Bayes filters developed up until now depend on the observation scheme being linear. This is not always the situation. For example, if we are measuring the target range \(R \) and azimuth angle \(\theta \) but keep track of the target using the east-north \(x, y \) coordinates of the target with a Kalman filter, then errors in the measurement of \(R \) and \(\theta \) are not linearly related to the resulting error in \(x \) and \(y \) because

\[
x = R \cos \theta
\]

and

\[
y = R \sin \theta
\]

where \(\theta \) is the target angle measured relative to the \(x \) axis. Section 16.2 shows how to simply handle this situation. Basically what is done is to linearize Eqs. (1) and (2) by using the first terms of a Taylor expansion of the inverse equations to (1) and (2) which are

\[
R = \sqrt{x^2 + y^2}
\]

\[
\theta = \tan \frac{y}{x}
\]

Similarly the equations of motion have to be linear to apply the Kalman–Bayes filters. Section 16.3 describes how a nonlinear equation of motion can be linearized, again by using the first term of a Taylor expansion of the nonlinear equations of motion. The important example of linearization of the nonlinear observation equations obtained when observing a target in spherical coordinates \((R, \theta, \phi)\) while tracking it in rectangular \((x, y, z)\) coordinates is given. The example of the linearization of the nonlinear target dynamics equations obtained when tracking a projectile in the atmosphere is detailed. Atmospheric drag on the projectile is factored in.

In Chapter 17 the technique for linearizing the nonlinear observation equations and dynamics target equations in order to apply the recursive Kalman and Bayes filters is detailed. The application of these linearizations to a nonlinear problem in order to handle the Kalman filter is called the extended Kalman filter. It is also the filter Swerling originally developed (without the
target process noise). The Chapter 16 application of the tracking of a ballistic projectile through the atmosphere is again used as an example.

The form of the Kalman filter given in Kalman’s original paper is different from the forms given up until now. In Chapter 18 the form given until now is related to the form given by Kalman. In addition, some of the fundamental results given in Kalman’s original paper are summarized here.

ELI BROOKNER

Sudbury, MA
January 1998
ACKNOWLEDGMENT

I would like to thank Fred Daum (Raytheon Company), who first educated me on the Kalman filter and encouraged me throughout this endeavor. I also would like to thank Erwin Taenzer (formally of the Raytheon Company), from whose many memos on the $g-k$ and $g-h-k$ filters I first learned about these filters. I am indebted to Barbara Rolinski (formerly of the Raytheon Company), who helped give birth to this book by typing a good part of its first draft, including its many complicated equations. This she did with great enthusiasm and professionalism. She would have finished it were it not that she had to leave to give birth to her second child. I would also like to thank Barbara Rolinski for educating her replacement on the typing of the text with its complicated equations using the VAX Mass-11 Word Processor. I would like to thank Lisa Cirillo (formerly of the Raytheon Company), Barbara Rolinski’s first replacement, for typing the remainder of the first draft of the book. I am most appreciative of the help of Richard P. Arcand, Jr. (Raytheon Company), who helped Barbara Rolinski and Lisa Cirillo on difficult points relative to the use of the VAX Mass-11 for typing the manuscript and for educating Ann Marie Quinn (Raytheon Company) on the use of the Mass-11 Word Processor. Richard Arcand, Jr. also meticulously made the second-draft corrections for the first part of the book. I am most grateful to Ann Marie Quinn for retyping some of the sections of the book and making the legion of corrections for the many successive drafts of the book. Thanks are also due the Office Automation Services (Raytheon Company) for helping to type the second draft of the second part of the book. Sheryl Evans (Raytheon Company) prepared many of the figures and tables for the book and for that I am grateful. I am grateful to Richard Arcand, Jr. for converting the text to Microsoft Word on the MAC. I am extremely grateful to Joanne Roche, who completed the horrendous task of retyping the equations into Microsoft Word.
and for correcting some of the figures. I am grateful to Joyce Horne for typing some of the problems and solutions and some of the tables and to Jayne C. Stokes for doing the final typing. Thanks are due to Peter Maloney (Raytheon Company) for helping to convert the manuscript from the MAC to the PC Microsoft Word format. Thanks are due Margaret M. Pappas, Filomena Didiano, Tom Blacquier, and Robert C. Moore of the Raytheon library for helping obtain many of the references used in preparing this book. I would like to thank Tom Mahoney and Robert E. Francois for providing some of the secretarial support needed for typing the book. Thanks are also due Jack Williamson and Sally Lampi (both of Raytheon Company) for their support.

Thanks are due to Robert Fitzgerald (Raytheon Company) for permitting me to extract from two of his excellent tracking papers and for his helpful proofreading of the text. Fritz Dworshak, Morgan Creighton, James Howell, Joseph E. Kearns, Jr., Charles W. Jim, Donald R. Muratori, Stavros Kanaracus, and Gregg Ouderkirk (all of Raytheon Company), and Janice Onanian McMahon and Peter Costa (both formerly of the Raytheon Company) also provided useful comments. Thanks are due Allan O. Steinhardt (DARPA) and Charles M. Rader (Lincoln Laboratory, MIT) for initially educating me on the Givens transformation. Special thanks is due Norman Morrison (University of Cape Town) for allowing me to draw freely from his book *Introduction to Sequential Smoothing and Prediction* [5]. His material formed the basis for Chapters 5 to 9, and 15 to 18.

Finally I would like to thank my wife, Ethel, for her continued encouragements in this endeavor. Her support made it possible.

E. B.
INDEX

| α–β Filter, 8, 23. *See also g–h Filter* |
| x–β–γ Filter, 8, 52. *See also g–h–k Filter* |
| Adaptive-adaptive array, 200. *See also Adaptive nulling* |
| Adaptive arrays, *see* Adaptive nulling |
| array, 200 |
| beam space, 200 |
| constraint preprocessor, 195, 196 |
| Power method, 193 |
| preprocessor, 195, 196 |
| sidelobe canceling (SLC), 188–200 |
| systolic array, 194, 298–314 |
| voltage-processing method, 188–200, 298–314 |
| Adaptive thresholding, 123, 124 |
| AEGIS, 10 |
| Airport Surveillance Radar (ASR), 4, 7, 8, 119–125 |
| Air route surveillance radar (ARSR), 67, 116 |
| Air search radar, 105 |
| Air traffic control (ATC), 38, 108 |
| Air traffic control radar, 3, 4, 7, 8, 116–125 |
| All-neighbors data association approach, 129 |
| AMRAAM, 16 |
| AN/FPS-114, 113–117 |
| AN/FPS-117, 117 |
| AN/FPS-18, 119–125 |
| AN/GPS-22, 9 |
| AN/SPG-51, 13, 16 |
| AN/SPS-49, 6, 8 |
| AN/TPQ-36, 14 |
| AN/TPQ-37, 13 |
| Approximation to Kalman filter, 84, 85 |
| Array antenna beamformer, 200 |
| ARSR-4, 117 |
| ARTS III filter, 84, 85 |
| Asquith-Friedland filter, 84–88 |
| ASR-11, 4, 8 |
| ASR-23SS, 7 |
| ASR-7, 124 |
| Association of data, 127–130 |
| ATC, 3, 8, 108, 124 |
| Atmospheric dimensionless drag coefficient, 76 |
| Atmospheric drag, 75, 363 |
| Autocorrelated acceleration, 89 |
| Auxiliary antennas, 188 |

| Back-substitution method, 181, 185, 269, 270 |
| Balancing errors, 27–29, 229, 230, 251 |
| Ballistic Missile Early Warning System (BMEWS), 10, 11 |
| Ballistic target example, 363–366 |
| Ballistic targets, 10, 11, 66, 67, 75, 150, 151, 363–370 |
| Bayes filter, 23, 260, 262, 263, 367–374 |
| comparison to Kalman filter, 262, 263 |
| derivation, problem 9.3-1 |
| maximum likelihood estimate, 262 |

465
Bayes filter (continued)
nonlinear system, 367–374
Beamformer, 200
Bias error, 25–27, 52–57, 225–232, 238, 251
Bias reduction, 230–232
BMews, see Ballistic Missile Early Warning System
Ceres, 374
CFAR, see Constant false alarm rate
Characteristic equation, 258, 276, problem 10.2–1
Chirp waveform, 132–151, 204
Circuit diagram, 46, 49
Classical Gram-Schmidt (CGS), 174–188, 322–338. See also Gram-Schmidt orthonormal transformation
Classical weighted least-squares estimate, 204
Clustering, 120–125
Clutter, 111–115, 118
Clutter rejection, 116–127
Clutter suppression, 116–127
Coached detection, 123
Cobra Dane, 10, 11, 135
Coherent processing interval (CPI), 119, 120
Commonsense approach, 14, 17–21, 32–36
Comparison of filters, 105
Compressed pulse, 133
Computer roundoff error, 175, 264–267, 278–282, 295, 296, 344, 340–342
Conditional density estimate, 377
Condition number, 279, 280
Constant acceleration, 25, 145
Constant-coefficient linear differential vector equation, 254–256
Constant g–h–k, 95. See also g–h–k Filter
Constant false alarm rate (CFAR), 123, 124
Constant-velocity target, 24, 162
Constraint preprocessor, 195, 196
Coordinates, 60–63, 265, 267, 358, 359
CORDIC algorithm, 307–314
complex numbers, 314
rotation, 307–313
vectoring, 307, 311, 312
Corrector equation, 73, 74
Covariance matrix, 59, 73, 74, 200–203
Covariance matrix definition, 59
CPI, see Coherent processing interval
Critically damped g–h filter, 23, 29, 32–46, 50, 53, 86, 87. See also Fading-memory polynomial filter; g–h Filter
Critically damped g–h–k filter, 52–54, 57–58. See also Fading-memory polynomial filter; g–h–k Filter
Desert Storm, 7, 10
Design curves, 31, 33–34, 53–57, 95–104, 147, 149
Design tables, 31, 38–40, 220, 221, 237, 246, 248, 309
Deterministic dynamics, 6, 64
Differentiation of matrix, 82–84
Digital Airport Surveillance Radar (DASR), 4
Dimensionless Fitzgerald parameters, 95–104, 146–151
Discounted least-squares estimate, 36. See also Critically damped g–h filter; Critically damped g–h–k filter; Fading-memory polynomial filter
Discounted least-squares g–h filter, see Critically damped g–h filter; Fading-memory polynomial filter
Discrete Kalman filter, 84–88
Discrete-time orthogonal Legendre polynomials (DOLP), 165, 208–211, 345–353
Dispersive network, 133
Doppler, 116–126, 142
Dot product, 172–173
Downchirp LFM waveform, 146–151
Drag coefficient, 76, 363
Drag constant, 76
Driving noise, 65
Driving noise vector, 70
Dual coordinate system (DCS), 63
Dynamic error, see Bias error
Dynamic model, 6, 64, 69, 70
avaptive, 108, 382
Asquith-Frieland filter, 84–88
constant-coefficient linear differential vector equation, 254–256
deterministic, 6, 64
discrete Kalman filter, 84–88
general model as sum of exponentials, 258, 259
Kalman filter, 64, 65, 84–94
linear constant-coefficient differential equation, 253
linear time-invariant system, 6, 51, 64, 85, 87–91, 155, 160, 252–259
linear time-variant system, 354–356
linear time-variant vector differential equation, 355
nonlinear system, 360–366
Singer-Kalman model, 88–94
Taylor expansion for, 355, 356, 360–362
transition matrix for, 70, 90, 252–258. See also
INDEX

Transition matrix (main listing) 467
Dynamic model noise covariance, 73
Dynamics, adjusting to, 108. See also Dynamic model 108
Dynamics noise, 65

Editing for inconsistencies, 121
Equivalently scanned radar, 9–15, 45, 135
Eliminating clutter, 116–127
Equivalent circuit, 46, 49
Errors measurement, 27–29
Estimate variance, see Variance of estimate
Exact derivation of Kalman filter, 80–84

Expanding-memory polynomial filter, 23, 49–51, 57, 86, 233–238. See also Fixed memory polynomial filter
bias error, 25–27, 52, 238
g–h filter, 47–51, 235, 236
g–h–k filter, 57, 58, 235, 236
recursive form, 48–50, 234–236
stability, 47, 236
track initiation of, 236
track initiation, use for, 49–51, 56, 57, 248–251
variance reduction factors, 237
Extended Kalman filter, 153, 367–374
Eyeball fit, 33

FAA, 119
Fading-memory g–h filter, see Critically damped g–h filter; Fading-memory polynomial filter
Fading-memory g–h–k filter, see Critically damped g–h–k filter; Fading-memory polynomial filter
Fading-memory polynomial filter, 23, 32–43, 53. See also Critically damped g–h filter; Critically damped g–h–k filter; g–h–k filter; Kalman filters
balancing errors, 251
bias error, 251
bias reduction, 230–232
comparison to fixed-memory polynomial filter, 245–248
Laguerre polynomial fit, 165, 166, 240–244
orthogonal polynomial fit, 165, 166, 240–244
recursive form, 242–244
scaled state vector VRF, 244–245
stability, 244
track initiation, 248–251
variance of estimate, 244–245
variance reduction factor, 244–245

False-alarm probability, 111–115
Fan-beam radar, 3–8
Feedback for constant false alarm rate control, 123, 124
Feedback form of g–h filter, problems, 1.2.1–1, 1.2.6–5
Filtered error, 99–101
Filtered estimate, 20
Filtered estimate, definition, 21
Filtering equation, 20, 72
Filtering problem, 22
Final-value theorem, problem 1.2.6–4
Firefinder AN/TPQ–36, 13, 14
Firefinder AN/TPQ–37, 13, 14
Firm tracks, 130

Fitzgerald dimensionless design parameters, 95–104, 146–151

Fixed-memory polynomial filter, 205–238. See also Expanding-memory polynomial filter
balancing errors, 229, 230
bias error, 225–229
bias reduction, 230–232
DOLP fit, 208–212
explicit solution in matrix form, 214–217
Legendre polynomial fit, 208–212
nonorthogonal polynomial fit, 164, 165
orthogonal polynomial fit, 208–212
scaled state vector, 214
trend removal, 230–232
variance of estimate, 217–225
variance of estimate, simple expressions, 224, 225

Gauss, 202, 374, 376
Gauss elimination form, 181, 182, 185, 193, 295, 328
Gaussian distribution, 201, 377
GRB, 12

Geometric derivation of LSE, 167–174

g–h Filter, 14, 64–75, 105, 235, 236
α–β, 8, 23
ARTS III filter, 84, 85
Asquith-Friedland filter, 84–88
balancing errors, 27–29
Bayes filter, 23
Benedict-Bordner, derivation, problem 2.4–1
Benedict-Bordner design curves, 32–34
Benedict-Bordner filter, 23, 29–32, 43–46, 85–87
Benedict-Bordner filter design table, 31
bias error, 25–27
bias error, derivation, problems 1.2.4–3, 1.2.6–4
circuit diagram, 46, 49
$g-h$ Filter (continued)

commonsense approach, 14, 17–21, 32–36
comparison of filters, 105
coordinates, 60–63, 266
corrector equation, 73
critically damped $g-h$ filter, 23, 29, 32–46, 50, 53, 86, 87. See also Fading-memory polynomial filter (main listing)
critically damped design curves, 41–43
critically damped design table, 38–40
critically damped examples, 40–46
critically damped filter poles, 37, problem 1.2.6-1
derivation of, 14, 17–21, 32–36
design curves, 32–34, 41–43
design tables, 31, 38–40
deterministic dynamic model, 6, 64
discounted least-squares estimate, 36
discounted least-squares $g-h$ filter, 23. See also Critically damped $g-h$ filter
discrete Kalman filter, 84–88
drag coefficient, 76, 363
driving noise, 65
dynamic error, see Bias error
dynamic model noise covariance, 73
dynamics noise, 65
equivalent circuit, 46, 49
error measurement, 27–29
equations, 40–46
expanding memory, 23
expanding-memory polynomial filter, 23, 49–51, 86. See also Expanding-memory polynomial filter (main listing)
eyeball fit, 33
fading-memory polynomial filter, 23, 37. See also Fading-memory polynomial filter (main listing)
feedback form, problems, 1.2.1-1, 1.2.6-5
filtered estimate, 20, 21
filtered estimate definition, 20
filtering equations, 20
growing-memory filter, 23, 49. See also Expanding-memory polynomial filters
heuristic derivation, 14, 17–21
jerk, 29, 236
Kalman filter, 23, 29, 64–75
Kalman filter, steady state solution, problem 2.4-1 to 2.4-3
kill probability, 106
lag error, see Bias error
least-squares estimate, 32–36
least-squares filter (LSF), 23
lumped filter, 23
matrix form notation, 69–77
measurement error, 27–29
memory, 105
minimization of transient, 29–32
missed detections, 109
model noise, 65
multidimensional tracking, 59, 75
noise amplification factor, see Variance reduction factor
noise ratio, see Variance reduction factor
observation error, 71
observation matrix, 71. See also Observation matrix (main listing)
observation noise covariance, 73
optimum $g-h$ filter, 29
plant noise, 65
polar coordinates, 59–62
poles location, 37
poles location, derivation, problem 1.2.6-1
polynomial filter, 23, 49
prediction equation, 21
prediction estimate, 21
predictor equation, 72, 74
process noise, 65
random maneuvering, 77
random-walk velocity, 64
R, 0, 59–62
selection of tracking filter, 104–110
smoothed estimate definition, 21
stability conditions, 47
stability conditions, derivation, problem 1.2.9-1
steady-state, 24, 25, 50
systematic error, see Bias error
system dynamics, 64
system noise, 65
tables, 31, 38–40
Taylor expansion, 24
track initiation, 47–51
tracking error, see Variance reduction factor;
Variance
tracking-filter equations, 21
transient error, 29, problem 1.2.6-4
transition equations, 21
truncation error, see Bias error
two-point extrapolator, 105
two-state Kalman filter, 64–75
update equations, 20, 21
variance (VAR), 27–29, 50
variance reduction factor (VRF), 27–29, 41, problem 1.2.6-2
variance reduction factor (VRF), derivation of, problem 1.2.4.4-1
variance reduction ratio, see Variance reduction factor
Wiener filter, 23, 105
window, 107
Z-transform, 37, problems 1.2.6–1 to 1.2.6–4
g–h–k Filter, 38, 51–59, 235, 236
x–β–y filter, 8, 52
Benedict-Bordner design curves, 55–57
Benedict-Bordner design tables, 38–40
Benedict-Bordner filter, 53
bias error, 52–57
critical g–h–k, 95
critically damped g–h–k filter, 52–54, 57–58
design curves, 53–57, 95–104, 147, 149
dimensionless Fitzgerald parameters, 95–104, 146–151
discounted least-squares g–h–k filter, see
Fading-memory polynomial filter
expanding-memory polynomial filter, 57. See also Expanding-memory polynomial filter
(main listing)
fading-memory filter, see Critically damped g–h–k filter; Fading-memory polynomial filter (main listings)
filtered error, 99–101
Fitzgerald dimensionless parameters, 95–104, 146–151
growing-memory filter, see Expanding-memory polynomial filter
jerk, 53, 54
Kalman filter, 53
multidimensional tracking, 59
optimum g–h–k design curves, 55–57
optimum g–h–k design table, 38–40
optimum g–h–k filter, 29, 38–40, 55–57, 77
polar coordinates, 59–62
prediction equations, 51
prediction error, 98, 100, 101
Simpson filter, 53
Singer g–h–k filter, 95–104, 146–151
Singer-Kalman filter, 95–104, 146–151
smoothing, 102–104
steady-state, 95–104, 146–151
steady-state Kalman filter, 53
table, 38–40
track initiation, 57–58
track update equations, 51
transient error, 53
transition equations, 51, 69, 74. See also Transition matrix
transition matrix, 90, 156. See also Transition matrix (main listing)
variance reduction factor, 52. See also Variance reduction factor (main listing)
Givens orthonormal transformation, 181, 283–317, 328–331, 339–345
basic transformation, 283–295
comparison to Householder, 315–317, 328–331, 333, 340
computation advantage, 175, 278–280
table, 295–298, 302–305
Legendre polynomial fit equivalence, 345–353
QR decomposition, 342, 343
recursive form, 343–345
sequential algorithm, 343–345
systolic array for, 298–314
GPS–22, 8
Gram-Schmidt orthonormal transformation, 174–188, 322–345
circuit diagrams, 332, 333, 337, 338
classical Gram-Schmidt (CGS), 174–188, 322–338
comparison to Givens and Householder, 328–331, 339, 340
computation advantage, 175, 278–282, 334, 340–342
for random variables, 378
geometrical introduction to, 174–188
Legendre polynomial fit equivalence, 345–353
modified Gram-Schmidt (MGS), 334–338
QR decomposition, 342, 343
recursive form, 343–345
sequential algorithm, 343–345
Ground-based intercontinental ballistic missile (ICBM) systems, 63
Growing-memory filters, 23, 233. See also Expanding-memory polynomial filters
Handed off, 151
HAWK, 7, 8, 13, 16
Heuristic derivation, 14, 17–21
High Performance Precision Approach Radar (HiPAR), 8, 9
Householder orthonormal transformation, 315–321, 339–345
basic transformation, 315–321
comparison to Givens, 315–317, 328–331, 339, 340
comparison to Gram-Schmidt, 328–331, 339, 340
Legendre polynomial fit equivalence, 345–353
QR decomposition, 342, 343
recursive form, 343–345
reflection transformation, 317–319
sequential algorithm, 343–345
Hyperspace, 172–173
Hypothesis testing, 129
ICBM, see Intercontinental ballistic missile
Idempotent matrix, 171
Identify matrix, 171
Innovation, 382
Integrated Automatic Detection and Tracking (IADT), 60
Intercontinental ballistic missile (ICBM), 10, 67
Intermediate-range ballistic missile (IRBM), 66, 67
IRBM, see Intermediate-range ballistic missile
Jerk, 29, 53, 54, 236
Joint probabilistic data association (JPDA), 129
Kalman, xiii
Kalman filter, 8, 10, 23, 29, 53, 64–75, 105, 262, 367–387
adaptive, 108, 382
approximation to, table lookup, 84, 85
ARTS III filter, 84, 85
Asquith-Friedland filter, 84–88
atmospheric drag, 75
autocorrelated acceleration, 89
Benedict-Bordner, 65, 85–87
Benedict-Bordner design curves, 55–57
Benedict-Bordner design table, 38–40
bias error, 382. See also Bias error (main listing)
comparison with Swerling filter, 383–387
conditional density estimate, 377
constant g–h–k, 95–104, 146–151
corrector equation, 73, 74
covariance, 72–74. See also Variance of estimate
covariance matrix, 74. See also Variance of estimate
design curves, 55–57, 95–104, 147, 149
dimensionless Fitzgerald parameters, 95–104, 146–151
discrete Kalman filter, see Asquith-Friedland filter
driving noise, 65
driving noise vector, 70
dynamic model, 64, 65, 70, 85, 88–94. See also Dynamic model (main listing)
dynamic model noise covariance, 73, 74, 76, 77, 87, 90, 91
Dynamics noise, 65
equations
matrix form, 69–77, 262, 263, 381
original form, 380
exact derivation, 80–84
extended Kalman filter, 367–374
filtered error, 99, 100, 101
filtering equation, 72, 74, 262, 381
Fitzgerald dimensionless parameters, 95–104, 146–151
g–h filter, 64–75
Gram-Schmidt orthogonalization, 378
handover, 67
innovation, 382
Kalman filtering equation, 72, 74, 262, 380, 381
loss function, 377
maneuver, 107, 108. See also Random maneuvering
matrix form notation, 69–77
maximum likelihood estimate, 262
minimum-variance equation, 77
missed detections, 109
model noise, 65
multidimensional tracking, 59, 75, 358, 359, 363–374
multistate, 75
nonlinear system, 367–374
observation error, 71
observation matrix, see Observation matrix (main listing)
observation noise covariance, 73
optimum g–h–k design curves, 55–57
optimum g–h–k filter, 29, 38–40, 53, 55–57
optimum g–h–k table, 38–40
original form, 376–381
plant noise, 65
prediction error, 98, 100, 101
predictor equation, 72, 74, 262, 380, 381
process noise, 65
properties of, 68
Q matrix, 73, 74, 76, 77, 87, 90, 91, 380, 381
random maneuvering, 64, 77, 85, 88–90, 107, 108
random-walk velocity, 64
reasons for using, 66–67
residual, 107, 108, 382
selection of tracking filter, 104–110
signal-to-noise ratio (SNR), 67
simplified, 105, 106
Singer g–h–k filter, 88–104, 146–151
Singer–Kalman filter, 88–104, 146–151
smoothing, 102–104
state vector, 70, 75, 89, 155–158, 162, 232, 254, 359, 365, 368–374. See also Scaled state vector (main listing)
steady-state, 53, 55–57, 65, 66, 146–151, problems 2.4-1, 2.4-2, and 2.4-3
system dynamics, 64, 65, 84–94. See also dynamic model (main listing)
system noise, 65
table lookup of approximation, 84
target dynamics equation, 64, 92–94. See also Dynamic model (main listing)
target dynamics model, 64, 65, 70, 85, 88–94.
See also Dynamic model (main listing)
tracking a ballistic target, 75
transition matrix, 70, 90. See also Transition matrix (main listing)
two-state, 64–75
weighted least-squares error estimate, 79, 81–83
weight equation, 74
white-noise acceleration forcing term, 89
white-noise maneuver excitation vector, 90

Kill probability, 106

Lag error, see Bias error
Laguerre polynomial fit, 165, 166, 240–244
Launch sites, 10
Least-squares filter (LSF), 23, 32–36. See also Least-squares estimation
Least-squares estimation (LSE), 23, 32–36, 155–374
adaptive nulling, 188–200
back-substitution method, 181, 185, 269–270
classical Gram-Schmidt, 174–188, 322–333
classical weighted least-squares estimate, 200–204
Gauss elimination, 181, 182, 185, 193
Givens transformation, 181, 283–314, 339–345
Gram-Schmidt method, 174–188, 322–345
Householder transformation, 315–321, 339–345
minimum variance estimate, 200–204
modified Gram–Schmidt, 333–338
nonorthogonal polynomial fit, 206–208
orthonormal transformation, 174–200, 264–354. See also Orthonormal transformation (main listing)
polynomial fit, 164, 165, 212–214. See also Expanding-memory polynomial filter;
Fading-memory polynomial filter; Fixed-memory polynomial filter; Nonorthogonal polynomial fit
power method, 193
quasi-weighted, 202
square-root method, 165, 174–188, 264–354. See also Orthonormal transformation (main listing)

INDEX
471
Matrix (continued)
Kalman filter in matrix form, 69–77, 262, 263, 357–382
measurement, 71, 75, 76, 155, 157, 158, 370–372
nonnegative definite, 201
observation, see Observation matrix (main listing)
orthogonal, 322–324
orthonormal, 172. See also Transformation, orthonormal
orthonormal transformation, 155–374. See also Transformation, orthonormal
prediction estimate, 70, 72, 74, 75
projection, 171, 172
pseudoinverse, 169, 170
Q, see Q Matrix (main listing)
Q', 322–338
R, see R Matrix (main listing)
R', 325, 327, 329, 330, 325–337
semidefinite, 201
singular, 265, 266, 341, 382
smoothed estimate, 372–374
Swerling filter in matrix form, 357–374
T, 158–164, 167
T', 268, 296
T'_0, 292, 321, 328
transformation, orthonormal, 155–374. See also Orthonormal transformation (main listing)
Givens, 181, 283–317, 328–331, 339–345
Gram–Schmidt, 174–188, 322–345
classical, 174–188, 322–338
modified, 334–338
Householder, 315–321, 339–345
transition, see Transition matrix (main listing)
transpose of, 59
U, see U matrix (main listing)
U', 327, 328, 333
upper triangular, see U, U', R, and R' matrices
upper triangular, inversion of, 351, problem 1.4-1
Matrix differentiation, 82–84
Matrix form notation, 69–77
Maximum-likelihood estimate, 201, 262
Measurement error, see Observation error
Measurement matrix, 71, 75, 76, 155, 158, 370–372
Memory, 105
Minimization of transient error, 29–32
Minimum-variance equation, 77–84, 200–203, 262
Minimum-variance estimate, 200–204
Mismatched filter, 137
Mismatched receiver, 203
Missed detections, 109
MMIC, see Monolithic microwave integrated circuit
Model noise, 65
Modified Gram-Schmidt (MGS), 334–338. See also Gram–Schmidt orthonormal transformation
Monolithic microwave integrated circuit (MMIC), 12
Monopulse Secondary Surveillance Radar (MSSR), 4
Moving-target detector (MTD), 60, 116–121, 125–127
clutter rejection, 116–121, 125–127
MTD, see Moving-target detector
Multidimensional space, 168
Multidimensional tracking, 59, 75, 358, 359, 363–374
National Aviation Facilities Engineering Center (NAFEC), 119
NATO SEASPARROW, 13, 17
Nearest-neighbor approach, 127–129
Noise amplification factor, see Variance reduction factor
Noise ratio, see Variance reduction factor
Nonchirped linear frequency modulation waveform, 146–151
Nonlinear dynamics model, 360–366, 367–374
linearization, 360–374
Taylor expansion, 361, 362
Nonlinear observation scheme, 357–360, 367–374
linearization, 358–360, 367–374
Taylor expansion, 359
Nonlinear system, 360–374
Nonnegative definite matrix, 201
Nonorthogonal polynomial fit, 206–208
Notation, 388, 401–417
covariance matrix, 218
estimates, 20, 21
Null vector, 187
Numerical computation error, 175, 264–267, 278–282, 295, 296, 334, 340–342
Observation equation, 158. See also Observation matrix
Observation error, 27, 71, 155–158, 160
Observation matrix, 71, 91, 146, 151, 155, 158
chirp waveform, 146, 151
linear system, 71, 91, 155, 157, 158, 161, 206, 234, 239, 349, 354
multiple measurements, 156–158, 370–373
nonlinear system, 357–360, 368–370
Observation merging, 116–127
Observation noise covariance matrix, 59, 73, 74
Observation space, 158
Optimum g–h–k filter, 29, 38–40, 55–57, 77
Orthogonal discrete-time Legendre polynomials, 165, 208–212, 345–353
Orthogonal discrete-time Laguerre polynomials, 165, 166, 240–244
Orthonormal matrix, 172. See also Matrix, transformation
Orthogonal polynomial fit, 208–211, 240–244. See also Orthogonal transformation; Orthonormal transformation
Orthogonal transformation, 322–326, 334–338. See also Orthonormal transformation
Orthonormal coordinate system, 177
Orthonormal transformation matrix, 177, 178. See also Orthonormal transformation
Orthonormal transformation, 165, 166, 174–200, 264–354
adaptive arrays, see Adaptive nulling
computation advantage, 195, 278–282
for random variables, 378
Givens, see Givens orthonormal transformation
Gram–Schmidt, see Gram–Schmidt orthonormal transformation
Householder, see Householder orthonormal transformation
Laguerre polynomials, 165, 166, 240–244
least-square estimate, use of, 165, 166, 174–188, 263–270
Legendre polynomials, 165, 208–212, 345–353
reason for better accuracy, 278–282
sidelobe canceler, see Adaptive nulling
systolic arrays, see Systolic arrays

PATRIOT, 9, 10, 12, 45
Pave Paws, 12
Phased-array radar, 9–15, 45, 135
Planetoid, 374
Plant noise, 65
Polar coordinates, 59–62
Poles, 37
Polynomial filter, 23, 49. See also Polynomial filter
Polynomial fit, 164, 165, 212–214. See also Expanding memory polynomial filter; Fading-memory polynomial filter; Fixed-memory polynomial filter; Nonorthogonal polynomial fit
Polynomial state variable representation, 212–214
Power method, 193
Practical issues, 111–151
acceleration, 60–63, 145
adaptive nulling, see Adaptive nulling
adaptive thresholding, 124
all-neighbors data association approach, 129
AN/FPS–117, 117
ARSR–4, 117
association of data, 127–130
chirp waveform, 132–151, 204
clustering, 120–125
clutter, 111–115, 118
clutter rejection, 116–127
coached detection, 123
constant false alarm rate (CFAR), 123, 124
Doppler, 116–126, 142
editing for inconsistencies, 121
elimination of clutter, 116–127
false-alarm probability, 111–115
feedback for constant false alarm rate (CFAR) control, 123, 124
firm tracks, 130
hypothesis testing, 129
joint probabilistic data association (JPDA), 129
Linear frequency modulation (LFM), 132–151
lognormal clutter, 111–115
moving-target detector (MTD), 60, 116–121, 125–127
clutter rejection, 116–121, 125–127
nearest-neighbor approach, 127–129
observation merging, 116–127
pulse repetition frequency (PRF), 117
probabilistic data association (PDA), 129
probabilistic hypothesis testing approach, 129
pseudoacceleration, 60–63
pulse-Doppler ambiguities, 116–126
rain clutter, 111–115
range ambiguities, 117
range-Doppler ambiguity, 141–151
redundancy-elimination, 120–125
retrospective detection, 111–117
sea clutter, 111–115
sequential probability ratio test (SPRT), 127
spiky clutter, 111–115
target signatures, 130
tentative tracks, 130
track-drop, 127
tracking initiation, 111–115
Practical issues (continued)
track-start, 127
waveform, 132–151
waveform, chirp, 132–151
Weibull clutter, 112
Prediction equations, 21, 51
Prediction error, 98, 100, 101
Prediction estimate, 21
Prediction window, 128
Predictor equation, 72, 74
Probabilistic data association (PDA), 129
Probabilistic hypothesis testing approach, 129
Process noise, 65
Projection matrix, 171, 172
Pseudoacceleration, 60–63
Pseudoinverse, 169, 170
Pulse Acquisition Radar (PAR), 7, 8
Pulse coding, 137–140
Pulse compression (PC), 136, 137, 203
Pulse-Doppler ambiguities, 116–126
Pulse repetition frequency (PRF), 117
Q Matrix, 87, 91
dynamic model covariance, 73, 74, 76, 77, 87, 90, 91
orthonormal transformation, 174–188, 322–338, 343
Q’ matrix, 322–338
QR decomposition, 342, 343
Quasi-weighted least-squares estimate, 202
R, θ coordinates, 59–62
R, θ, φ coordinates, 60, 62, 358, 359
R Matrix
observation noise covariance, 73, 74, 81
transformed T, 325–327, 342, 343
R’ matrix, 325–337
Radar, 3, 4, 105
acceleration, 145, 146, 363, 365
adaptive thresholding, 123, 124
AEGIS, 10
air route surveillance radar (ARSR), 67, 116
air traffic control, 3, 4, 7, 8, 116–125
Airport Surveillance Radar (ASR), 4, 7, 8, 119–125
AMRAAM, 16
AN/FPS-114, 113–117
AN/FPS-117, 117
AN/FPS-18, 119–125
AN/GPS-22, 9
AN/SPG-51, 13, 16
AN/SPS-49, 6, 8
AN/TPQ-36, 14
AN/TPQ-37, 13
ARSR-4, 117
ASR-7, 124
ASR-23SS, 7
ATC, 3, 4, 7, 8, 116–125
Ballistic Missile Early Warning System (BMEWS), 10, 11
classic target, 10–12, 66, 67, 150, 151,
363–370
beamformer, 200
chirp linear frequency modulation waveform, 132–151, 204
clutter rejection, 116–127
clutter suppression, 121–127
coached detection, 123
Cobra Dane, 10, 11, 135
coherent processing interval (CPI), 119, 120
cost false alarm rate (CFAR), 123, 124
dual coordinate system (DCS), 63
electronically scanned radar, 9–15, 45, 135
eliminating clutter, 116–127
FAA, 119
ground-based intercontinental ballistic missile (ICBM) systems, 63
handed off, 151
HAWK, 7, 8, 13, 16
High Performance Precision Approach Radar (HiPAR), 8, 9
Integrated Automatic Detection and Tracking (IADT), 60
intercontinental ballistic missile (ICBM), 10, 67
intermediate-range ballistic missile (IRBM), 66, 67
limited electronically scanned, 13, 14
limited-scan, 13, 14
linear frequency modulation (LFM), 132–151
Low Altitude Simultaneous HAWK Engagement (LASHE), 16
matched filter, 137
matched receiver, 203
mismatched filter, 137
mismatched receiver, 203
monolithic microwave integrated circuit (MMIC), 12
Monopulse Secondary Surveillance Radar (MSSR), 4
moving-target detector (MTD), 60, 116–121, 125–127
clutter rejection, 116–121, 125–127
NATO SEASPARROW, 13, 17
nonchirped linear frequency modulation waveform, 146–151
PATRIOT, 9, 10, 12, 45
Pave Paws, 12
phased-array, 9–15, 45, 135
pulse acquisition radar (PAR), 7, 8
pulse coding, 137–140
pulse compression, 137, 203
pulse-Doppler ambiguities, 116–126
pulse repetition frequency (PRF), 117
range accuracy, 203
range ambiguities, 117, 141–151
range-Doppler ambiguity, 141–151
range-Doppler coupling, 141–146
range resolution, 203
Relocatable Over-the-Horizon Radar (ROTHR), 13, 15
retrospective detector, 113–117
satellite example, 367–374
Satellites, 12
SCUD missiles, 10, 12, 66
Sea clutter, 111–115
SEASPARROW, 13, 17
Selection of coordinates, 60–63, 265, 266
Selection of tracking filter, 104–110
Semidefinite matrix, 201
Sensor selection, 265, 266
Sequential algorithm, 343–345
Sequential probability ratio test (SPRT), 127
Sidelobe canceler (SLC), see Adaptive nulling
Signal-to-noise ratio (SNR), 67, 137, 203
Simplicity Kalman filter, 84, 104–106
Simpson filter, 53
Singer g–h–k Kalman filter, 88–94, 95–104, 146–151
basics of, 88–94
design curves, 95–104, 146–151
Singular, 265, 266, 341, 382
Smoothed estimate, definition, 21
Smoothing, 102–104, 370–374
Snatch, 236
SNR, see Signal-to-noise ratio
Spherical coordinate, 60, 62, 358, 359
Spherical-to-rectangular coordinates, 62
Spiky clutter, 111–115
Square-root, interpretation of, 275–278
Rain clutter, 111–115
Random maneuvering, 64, 77, 85, 88–90, 107, 108
Random-walk velocity, 64
Range accuracy, 203
Range ambiguities, 117, 141–151
Range-Doppler ambiguity, 141–151
Range-Doppler coupling, 141–146
Range resolution, 203
Redundancy-elimination, 120–125
Reentry vehicle (RV) example, 150, 151
Reflection transformation, 317–319
Relocatable Over-the-Horizon Radar (ROTHR), 13, 15
Residual, 107, 108, 382
Retrospective detection, 111–117
ROTHR, see Relocatable Over-the-Horizon Radar
RouthHurwitz, problem 1.2.9-1
RV example, see Reentry vehicle example
Satellite example, 367–374
Satellites, 12
Sea clutter, 111–115
Sea clutter, 111–115
SEASPARROW, 13, 17
Selection of coordinates, 60–63, 265, 266
Selection of tracking filter, 104–110
Semidefinite matrix, 201
Sensor selection, 265, 266
Sequential algorithm, 343–345
Sequential probability ratio test (SPRT), 127
Sidelobe canceler (SLC), see Adaptive nulling
Signal-to-noise ratio (SNR), 67, 137, 203
Simplified Kalman filter, 84, 104–106
Simpson filter, 53
Singer g–h–k Kalman filter, 88–94, 95–104, 146–151
basics of, 88–94
design curves, 95–104, 146–151
Singular, 265, 266, 341, 382
Smoothed estimate, definition, 21
Smoothing, 102–104, 370–374
Snatch, 236
SNR, see Signal-to-noise ratio
Spherical coordinate, 60, 62, 358, 359
Spherical-to-rectangular coordinates, 62
Spiky clutter, 111–115
Square-root, interpretation of, 275–278

INDEX 475
Square-root Kalman filter, 353
Square-root method, 165, 174–188, 194, 264–354. See also Givens orthonormal transformation; Gram-Schmidt orthonormal transformation; Householder orthonormal transformation
Stability, 47, 236, 244, 382
State vector, 70, 5, 89, 155–158, 162, 232, 254, 363, 365
differential, 359, 365, 368–374
differential equation, 254, 355, 362, 375
Taylor expansion for, 255
Steady-state, 24, 25, 50, 95–104, 146–151
Submarine-launched ballistic missiles, 12
Subsurface search, 105
Suppression of clutter, 116–127
Surface search, 105
Surveillance radar, 3, 4
Swerling filter, 367–374, 383–387
comparison with Kalman filter, 383–387
Systematic error, see Bias error
System dynamic model, 6
System dynamics, 64. See also Dynamic model
System noise, 65
Systolic array, 194, 298–314

T Matrix, 158–164, 167
T^* Matrix, 158–164, 167
Tables, design, 31, 38–40, 220, 221, 237, 246, 248, 309
Target dynamics equation, 92–94. See also Dynamic model
Target dynamics model, 88. See also Dynamic model
Target interception, 151
Target signatures, 130
TARTAR, 13, 16
Taylor expansion, 24, 355, 356, 359, 361, 362
Tentative tracks, 130
Theater High Altitude Area Defense (THAAD), 10, 12
Three-dimensional tracking, 60, 75, 358
Time-invariant system, see Dynamic model
Time-varying system, see Dynamic model
Track-drop, 127
Tracking a ballistic target, 66, 67, 75, 150, 151, 363–370
Tracking-filter equations, 21, 51, 74
Tracking radar, 16, 17
Track initiation, 47–51, 57, 58, 116–127, 130–132, 236, 248–251
Track update equations, 20, 21, 51, 74
Track-start, 127. See also Track initiation
Track-while-scan (TWS), 4, 6–8, 130–132
Transformation, see Orthonormal transformation
Transformation matrix, see Matrix
Transformation to sidelobe canceler, 196
Transformations coordinate, 62
Transient error, 29, 53, problem 1.2.6–4
Transition equations, 21, 51, 69, 74. See also Transition matrix
Transition matrix, 70, 90, 156, 157, 214, 215, 252–258, 354–356
definition, 70, 157, 214, 354
differential equation for, 257–259, 355, 362
differential state vector, 360–366
exponential form, 257
inverse of, 257, 356
methods of determining linear system, 252–258
nonlinear system, 360–366
time-varying system, 355, 356
nonlinear system, 360–366
scaled state vector, 214, 216, 217
Taylor expansion for, 256
time-invariant system, 70, 90, 156, 157, 214, 252–258
time-varying system, 354–356
Transpose of matrix, 59
Trend removal, 230–232
Truncation error, see Bias error
Two-dimensional radar, 60
Two-point extrapolator, 105
Two-state, 64–75
TWS, see Track-while-scan

physical interpretation, 275–278
relation to Legendre polynomials, 351–353
relation to square-root Kalman filter, 353
square-root interpretation, 275–278
U^* Matrix, 327, 328, 333
Uncompressed pulse, 133
Uncoupled filters, 60
Upchirp linear frequency modulation waveform, 132–151
Update (filtering) equations, 20, 21, 51, 74
INDEX

Valdez, 5
Variance (VAR), 27, 50. See also Variance of estimate
Variance of estimate
Bayes filter, 261, 262, 368, 369, 373
expanding-memory polynomial filter, 237
fading-memory polynomial filter, 244–248
fixed-memory polynomial filter, 217–225
g–f filter, 27, 32–34, 41–43, 50, 73, 74, problems 2.4-1, 2.4-2, 2.4-3
g–h–k filter, 52–56, 73, 74, 95–104
Kalman filter, 68, 69, 72–74, 80–84, 92, 95–104, 262, 368, 369, 373, 380, problems 2.4-1, 2.4-2, 2.4-3
least-squares estimate (LSE), 201, 202, 276–278
minimum variance estimate, 77–83, 201–203
nonlinear system, 367–370
quasi-least-squares estimate, 202, 203
simple expressions, 224, 225
Variance reduction factor (VRF), 27, 28, 41, 52, 219–225, 229, 230, 237, 244–246. See also Variance of estimate
derivation of, problem 1.2.4.4-1
Variance reduction ratio, see Variance reduction factor
Vector, 172
dot product, 172
hyperspace, 172
magnitude, 172
null, 172
space, 172
unit, 172
Velocity constant, 157
Vessel traffic system (VTS), 5
Voltage processing, 153
Voltage-processing method, 165, 174–188, 194, 264–354. See also Givens orthonormal transformation; Gram-Schmidt orthonormal transformation; Householder orthonormal transformation
as orthonormal transformation, 174–188, 267–275
computation advantage of, 175, 264–267, 278–282, 295, 296, 334, 340–342
equivalence to DOLP, 345–353
simple geometric introduction to, 174–188
VRF, see Variance reduction factor
Waveform, 132–151
Waveform, chirp, 132–151
Weibull clutter, 112
Weight equation, 74
Weighted least-squares estimate, see Least-squares estimate
White noise, 89
White-noise acceleration forcing term, 89
White-noise maneuver excitation vector, 90
Wiener filter, 23, 105
Window, 5, 107, 128
x,y coordinates, 60–63, 363–365
x,y,z coordinates, 62, 358, 359
Yank, 236
Z-transform, 37, problems 1.2.6-1 to 1.2.6-4, 1.2.9-1
final value theorem, problem 1.2.6-4
sum of residue of poles, problems 1.2.6-2, 1.2.6-3