STABLE ADAPTIVE CONTROL AND ESTIMATION FOR NONLINEAR SYSTEMS
Adaptive and Learning Systems for Signal Processing, Communications, and Control

Editor: Simon Haykin
STABLE ADAPTIVE CONTROL AND ESTIMATION FOR NONLINEAR SYSTEMS
Neural and Fuzzy Approximator Techniques

Jeffrey T. Spooner
Sandia National Laboratories

Manfredi Maggiore
University of Toronto

Raúl Ordóñez
University of Dayton

Kevin M. Passino
The Ohio State University
Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2002 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

This title is also available in print as ISBN 0-471-41546-4.

For more information about Wiley products, visit our web site at www.Wiley.com.
To our families
Contents

Preface xv

1 Introduction 1
 1.1 Overview 1
 1.2 Stability and Robustness 2
 1.3 Adaptive Control: Techniques and Properties 4
 1.3.1 Indirect Adaptive Control Schemes 4
 1.3.2 Direct Adaptive Control Schemes 5
 1.4 The Role of Neural Networks and Fuzzy Systems 6
 1.4.1 Approximator Structures and Properties 6
 1.4.2 Benefits for Use in Adaptive Systems 8
 1.5 Summary 10

I Foundations 11

2 Mathematical Foundations 13
 2.1 Overview 13
 2.2 Vectors, Matrices, and Signals: Norms and Properties 13
 2.2.1 Vectors 14
 2.2.2 Matrices 15
 2.2.3 Signals 19
 2.3 Functions: Continuity and Convergence 21
 2.3.1 Continuity and Differentiation 21
 2.3.2 Convergence 23
 2.4 Characterizations of Stability and Boundedness 24
 2.4.1 Stability Definitions 26
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Boundedness Definitions</td>
</tr>
<tr>
<td>2.5 Lyapunov's Direct Method</td>
</tr>
<tr>
<td>2.5.1 Preliminaries: Function Properties</td>
</tr>
<tr>
<td>2.5.2 Conditions for Stability</td>
</tr>
<tr>
<td>2.5.3 Conditions for Boundedness</td>
</tr>
<tr>
<td>2.6 Input-to-State Stability</td>
</tr>
<tr>
<td>2.6.1 Input-to-State Stability Definitions</td>
</tr>
<tr>
<td>2.6.2 Conditions for Input-to-State Stability</td>
</tr>
<tr>
<td>2.7 Special Classes of Systems</td>
</tr>
<tr>
<td>2.7.1 Autonomous Systems</td>
</tr>
<tr>
<td>2.7.2 Linear Time-Invariant Systems</td>
</tr>
<tr>
<td>2.8 Summary</td>
</tr>
<tr>
<td>2.9 Exercises and Design Problems</td>
</tr>
<tr>
<td>3 Neural Networks and Fuzzy Systems</td>
</tr>
<tr>
<td>3.1 Overview</td>
</tr>
<tr>
<td>3.2 Neural Networks</td>
</tr>
<tr>
<td>3.2.1 Neuron Input Mappings</td>
</tr>
<tr>
<td>3.2.2 Neuron Activation Functions</td>
</tr>
<tr>
<td>3.2.3 The Multilayer Perceptron</td>
</tr>
<tr>
<td>3.2.4 Radial Basis Neural Network</td>
</tr>
<tr>
<td>3.2.5 Tapped Delay Neural Network</td>
</tr>
<tr>
<td>3.3 Fuzzy Systems</td>
</tr>
<tr>
<td>3.3.1 Rule-Base and Fuzzification</td>
</tr>
<tr>
<td>3.3.2 Inference and Defuzzification</td>
</tr>
<tr>
<td>3.3.3 Takagi-Sugeno Fuzzy Systems</td>
</tr>
<tr>
<td>3.4 Summary</td>
</tr>
<tr>
<td>3.5 Exercises and Design Problems</td>
</tr>
<tr>
<td>4 Optimization for Training Approximators</td>
</tr>
<tr>
<td>4.1 Overview</td>
</tr>
<tr>
<td>4.2 Problem Formulation</td>
</tr>
<tr>
<td>4.3 Linear Least Squares</td>
</tr>
<tr>
<td>4.3.1 Batch Least Squares</td>
</tr>
<tr>
<td>4.3.2 Recursive Least Squares</td>
</tr>
<tr>
<td>4.4 Nonlinear Least Squares</td>
</tr>
<tr>
<td>4.4.1 Gradient Optimization: Single Training Data Pair</td>
</tr>
<tr>
<td>4.4.2 Gradient Optimization: Multiple Training Data Pairs</td>
</tr>
<tr>
<td>4.4.3 Discrete Time Gradient Updates</td>
</tr>
</tbody>
</table>
CONTENTS ix

4.4.4 Constrained Optimization 91
4.4.5 Line Search and the Conjugate Gradient Method 95
4.5 Summary 101
4.6 Exercises and Design Problems 102

5 Function Approximation 105
5.1 Overview 105
5.2 Function Approximation 106
 5.2.1 Step Approximation 107
 5.2.2 Piecewise Linear Approximation 113
 5.2.3 Stone-Weierstrass Approximation 115
5.3 Bounds on Approximator Size 119
 5.3.1 Step Approximation 119
 5.3.2 Piecewise Linear Approximation 120
5.4 Ideal Parameter Set and Representation Error 122
5.5 Linear and Nonlinear Approximator Structures 123
 5.5.1 Linear and Nonlinear Parameterizations 123
 5.5.2 Capabilities of Linear vs. Nonlinear Approximators 124
 5.5.3 Linearizing an Approximator 126
5.6 Discussion: Choosing the Best Approximator 128
5.7 Summary 130
5.8 Exercises and Design Problems 130

II State-Feedback Control 133

6 Control of Nonlinear Systems 135
6.1 Overview 135
6.2 The Error System and Lyapunov Candidate 137
 6.2.1 Error Systems 137
 6.2.2 Lyapunov Candidates 140
6.3 Canonical System Representations 141
 6.3.1 State Feedback Linearizable Systems 141
 6.3.2 Input-Output Feedback Linearizable Systems 149
 6.3.3 Strict-Feedback Systems 153
6.4 Coping with Uncertainties: Nonlinear Damping 159
 6.4.1 Bounded Uncertainties 160
 6.4.2 Unbounded Uncertainties 161
 6.4.3 What if the Matching Condition Is Not Satisfied? 162
6.5 Coping with Partial Information: Dynamic Normalization 163
6.6 Using Approximators in Controllers

6.6.1 Using Known Approximations of System Dynamics
6.6.2 When the Approximator Is Only Valid on a Region

6.7 Summary

6.8 Exercises and Design Problems

7 Direct Adaptive Control

7.1 Overview

7.2 Lyapunov Analysis and Adjustable Approximators

7.3 The Adaptive Controller

7.3.1 σ modification
7.3.2 ϵ-modification

7.4 Inherent Robustness

7.4.1 Gain Margins
7.4.2 Disturbance Rejection

7.5 Improving Performance

7.5.1 Proper Initialization
7.5.2 Redefining the Approximator

7.6 Extension to Nonlinear Parameterization

7.7 Summary

7.8 Exercises and Design Problems

8 Indirect Adaptive Control

8.1 Overview

8.2 Uncertainties Satisfying Matching Conditions

8.2.1 Static Uncertainties
8.2.2 Dynamic Uncertainties

8.3 Beyond the Matching Condition

8.3.1 A Second-Order System
8.3.2 Strict-Feedback Systems with Static Uncertainties
8.3.3 Strict-Feedback Systems with Dynamic Uncertainties

8.4 Summary

8.5 Exercises and Design Problems

9 Implementations and Comparative Studies

9.1 Overview

9.2 Control of Input-Output Feedback Linearizable Systems

9.2.1 Direct Adaptive Control
9.2.2 Indirect Adaptive Control
9.3 The Rotational Inverted Pendulum 263
9.4 Modeling and Simulation 264
9.5 Two Non-Adaptive Controllers 266
 9.5.1 Linear Quadratic Regulator 267
 9.5.2 Feedback Linearizing Controller 268
9.6 Adaptive Feedback Linearization 271
9.7 Indirect Adaptive Fuzzy Control 274
 9.7.1 Design Without Use of Plant Dynamics Knowledge 274
 9.7.2 Incorporation of Plant Dynamics Knowledge 282
9.8 Direct Adaptive Fuzzy Control 285
 9.8.1 Using Feedback Linearization as a Known Controller 286
 9.8.2 Using the LQR to Obtain Boundedness 290
 9.8.3 Other Approaches 296
9.9 Summary 299
9.10 Exercises and Design Problems 300

III Output-Feedback Control 305

10 Output-Feedback Control 307
 10.1 Overview 307
 10.2 Partial Information Framework 308
 10.3 Output-Feedback Systems 310
 10.4 Separation Principle for Stabilization 317
 10.4.1 Observability and Nonlinear Observers 317
 10.4.2 Peaking Phenomenon 325
 10.4.3 Dynamic Projection of the Observer Estimate 327
 10.4.4 Output-Feedback Stabilizing Controller 333
 10.5 Extension to MIMO Systems 337
 10.6 How to Avoid Adding Integrators 339
 10.7 Coping with Uncertainties 347
 10.8 Output-Feedback Tracking 350
 10.8.1 Practical Internal Models 353
 10.8.2 Separation Principle for Tracking 357
 10.9 Summary 359
 10.10 Exercises and Design Problems 360

11 Adaptive Output Feedback Control 363
 11.1 Overview 363
 11.2 Control of Systems in Adaptive Tracking Form 364
11.3 Separation Principle for Adaptive Stabilization
11.3.1 Full State-Feedback Performance Recovery 371
11.3.2 Partial State-Feedback Performance Recovery 374
11.4 Separation Principle for Adaptive Tracking
11.4.1 Practical Internal Models for Adaptive Tracking 387
11.4.2 Partial State-Feedback Performance Recovery 390
11.5 Summary 394
11.6 Exercises and Design Problems 398

12 Applications
12.1 Overview 401
12.2 Nonadaptive Stabilization: Jet Engine
12.2.1 State-Feedback Design 402
12.2.2 Output-Feedback Design 406
12.3 Adaptive Stabilization: Electromagnet Control
12.3.1 Ideal Controller Design 411
12.3.2 Adaptive Controller Design 417
12.3.3 Output-Feedback Extension 422
12.4 Tracking: VTOL Aircraft
12.4.1 Finding the Practical Internal Model 424
12.4.2 Full Information Controller 430
12.4.3 Partial Information Controller 431
12.5 Summary 432
12.6 Exercises and Design Problems 433

IV Extensions

13 Discrete-Time Systems
13.1 Overview 437
13.2 Discrete-Time Systems
13.2.1 Converting from Continuous-Time Representations 438
13.2.2 Canonical Forms 442
13.3 Static Controller Design 444
13.3.1 The Error System and Lyapunov Candidate 444
13.3.2 State Feedback Design 446
13.3.3 Zero Dynamics 451
13.3.4 State Trajectory Bounds 452
13.4 Robust Control of Discrete-Time Systems 454
13.4.1 Inherent Robustness 454
A key issue in the design of control systems has long been the robustness of the resulting closed-loop system. This has become even more critical as control systems are used in high consequence applications in which certain process variations or failures could result in unacceptable losses. Appropriately, the focus on this issue has driven the design of many robust nonlinear control techniques that compensate for system uncertainties.

At the same time neural networks and fuzzy systems have found their way into control applications and in sub-fields of almost every engineering discipline. Even though their implementations have been rather ad hoc at times, the resulting performance has continued to excite and capture the attention of engineers working on today’s “real-world” systems. These results have largely been due to the ease of implementation often possible when developing control systems that depend upon fuzzy systems or neural networks.

In this book we attempt to merge the benefits from these two approaches to control design (traditional robust design and so called “intelligent control” approaches). The result is a control methodology that may be verified with the mathematical rigor typically found in the nonlinear robust control area while possessing the flexibility and ease of implementation traditionally associated with neural network and fuzzy system approaches. Within this book we show how these methodologies may be applied to state feedback, multi-input multi-output (MIMO) nonlinear systems, output feedback problems, both continuous and discrete-time applications, and even decentralized control. We attempt to demonstrate how one would apply these techniques to real-world systems through both simulations and experimental settings.

This book has been written at a first-year graduate level and assumes some familiarity with basic systems concepts such as state variables and stability. The book is appropriate for use as a text book and homework problems have been included.
Organization of the Book

This book has been broken into four main parts. The first part of the book is dedicated to background material on the stability of systems, optimization, and properties of fuzzy systems and neural networks. In Chapter 1 a brief introduction to the control philosophy used throughout the book is presented. Chapter 2 provides the necessary mathematical background for the book (especially needed to understand the proofs), including stability and convergence concepts and methods, and definitions of the notation we will use. Chapter 3 provides an introduction to the key concepts from neural networks and fuzzy systems that we need. Chapter 4 provides an introduction to the basics of optimization theory and the optimization techniques that we will use to tune neural networks and fuzzy systems to achieve the estimation or control tasks. In Chapter 5 we outline the key properties of neural networks and fuzzy systems that we need when they are used as approximators for unknown nonlinear functions.

The second part of the book deals with the state-feedback control problem. We start by looking at the non-adaptive case in Chapter 6 in which an introduction to feedback linearization and backstepping methods are presented. It is then shown how both a direct (Chapter 7) and indirect (Chapter 8) adaptive approach may be used to improve both system robustness and performance. The application of these techniques is further explained in Chapter 9, which is dedicated to implementation issues.

In the third part of the book we look at the output-feedback problem in which all the plant state information is not available for use in the design of the feedback control signals. In Chapter 10, output-feedback controllers are designed for systems using the concept of uniform complete observability. In particular, it is shown how the separation principle may be used to extend the approaches developed for state-feedback control to the output-feedback case. In Chapter 11 the output-feedback methodology is developed for adaptive controllers applicable to systems with a great degree of uncertainty. These methods are further explained in Chapter 12 where output-feedback controllers are designed for a variety of case studies.

The final part of the book addresses miscellaneous topics such as discrete-time control in Chapter 13 and decentralized control in Chapter 14. Finally, in Chapter 15 the methods studied in this book will be compared to conventional adaptive control and to other "intelligent" adaptive control methods (e.g., methods based on genetic algorithms, expert systems, and planning systems).

Acknowledgments

The authors would like to thank the various sponsors of the research that formed the basis for the writing of this textbook. In particular, we would like to thank the Center for Intelligent Transportation Systems at The Ohio
State University, Litton Corp., the National Science Foundation, NASA, Sandia National Laboratories, and General Electric Aircraft Engines for their support throughout various phases of this project.

This manuscript was prepared using \LaTeX. The simulations and many of the figures throughout the book were developed using MATLAB.

As mentioned above, the material in this book depends critically on conventional robust adaptive control methods, and in this regard it was especially influenced by the excellent books of P. Ioannou and J. Sun, and S. Sastry and M. Bodson (see Bibliography). As outlined in detail in the "For Further Study" section of the book, the methods of this book are also based on those developed by several colleagues, and we gratefully acknowledge their contributions here. In particular, we would like to mention: J. Farrell, H. Khalil, F. Lewis, M. Polycarpou, and L-X. Wang. Our writing process was enhanced by critical reviews, comments, and support by several persons including: A. Bentley, Y. Diao, V. Gazi, T. Kim, S. Kohler, M. Lau, Y. Liu, and T. Smith. We would like to thank B. Codey, S. Paracka, G. Telecki, and M. Yanuzzi for their help in producing and editing this book. Finally, we would like to thank our families for their support throughout this entire project.

Jeff Spooner
Manfredi Maggiore
Raúl Ordóñez
Kevin Passino

March, 2002
Activation function, 54
Adaptive control
 direct, 258–261
 indirect, 261–263
Adaptive feedback linearization, 271
Adaptive tracking form, 365
Approximator, 74
 ideal representation, 122, 189
 in a static controller, 165–171
 linear vs nonlinear, 123–126
 linearization, 126–128
 size, 119–121, 124–126
 valid on a region, 167–171
Architecture, 507–509
ARMA, 77
Asymptotic stability, 27
Attitude control, 222
Augmented system, 320
Autonomous systems, 41–43
AutoRegressive Moving Average
 (ARMA), 77
Backstepping, 211, 311
Ball and beam, 175, 302, 361
Barbalat’s lemma, 23–24
Batch least squares, 77–79, 102
Bias, 54
Bounded, 30
Canonical representations, 141–159
 adaptive tracking form, 365
 input-output feedback linearizable, 149–153
 output-feedback, 310
 pure-feedback, 153
 state-feedback linearizable, 141–149
 strict-feedback, 153–159
Cauchy’s inequality, 15
Chain of integrators, 320
Chattering, 161
Class K, 33
Class-K, 33
Class $K\mathcal{L}$, 33
Conjugate gradient optimization,
 97–101
Constrained optimization, 94
Continuity, 21
Control Lyapunov function, 512
Controllable canonical form, 144
Controller-identifier separation, 254
Convex set, 22
Cost function, 74
Cruise control, 61, 194
Curse of dimensionality, 120
Dahl friction, 231
Dead zone, 173, 456
Dead-beat control, 448
Decrescent function, 33
Defuzzification, 64
 center average, 65
 center of gravity, 65
Describing function, 511
Design model, 2
Diagonally dominant, 250
Diffeomorphism, 136, 144
Direct adaptive control, 258–261
Direct adaptive fuzzy control, 285–296
Direct method, 31–38
Discrete optimization, 92
Discrete-time systems, 438–444
Disturbance rejection, 202–203
Domain of attraction, 29, 172
Dynamic normalization, 174, 513
Dynamic projection, 327–333
Dynamic uncertainties, 227–236
Energy pumping swing-up algorithm, 264
c-modification, 198–201, 255
Equilibrium, 25
Error systems, 137–140
Euclidean mapping, 53
Euler’s method, 92, 441
Expert control, 503–504
Exponential stability, 29
Feedback linearizing controller, 268
Field-controlled DC motor, 177
Filippov solution, 235
Flexible manipulator, 361
Forgetting factor, 82
Function
activation, 54
class-K, 33
class-K_∞, 33
class-\mathcal{K}_L, 33
continuous, 21
decreasing, 33
increasing, 32
Lipschitz continuous, 21
piecewise linear, 113
polynomial, 116
positive definite, 33
radially unbounded, 34
sigmoid, 111
squashing, 55
step, 107
strictly increasing, 32
threshold, 110
uniformly continuous, 21
unipolar, 55
Functional architecture, 507–509
Fuzzification, 63
Fuzzy implications, 62
Fuzzy system, 60–69
fuzzy implications, 62
linguistic variable, 61
membership function, 62
rule base, 61
t-norm, 64
universal approximator, 114
Gain margin, 3, 201
Genetic adaptive systems, 501–503
Genetic algorithm, 501–503
Genetic model reference adaptive controller, 502
Global, 25
Global asymptotic stability, 29
Global exponential stability, 30
Golden section search, 96, 101
Gradient, 22
Gradient method, 85–94, 502
Hessian matrix, 98
Hierarchical control, 508
Hurwitz matrix, 43, 142
polynomial, 148
Huygens center of oscillation, 426
Hölder’s Inequality, 19
Ideal parameter, 122, 189
Ideal representation, 122
Ideal representation error, 122, 189
Increasing function, 32
Indirect adaptive control, 261–263
Indirect adaptive fuzzy control, 274–285
Induced norm, 16
Induction motor, 176
INDEX 543

Inequality
Cauchy, 15
Hölder’s, 19
Minkowski, 20
Schwartz, 19
triangle, 14
Infimum, 19
Initialization, 204
Inner product, 53
Input gain, 173
Input mapping, 52
Euclidean, 53
inner product, 53
weighted average, 53
Input uncertainty, 172
Input-output feedback linearizable systems, 149–153
Input-to-state practical stability, 39
Input-to-state stability, 38–41, 152
Invariant set, 26, 41
Inverted pendulum, 70, 173, 263
Isolated equilibrium, 25
Jacobian, 22, 320
K-filter, 365
Key Technical Lemma, 458
Knowledge-based system, 504–506
Lagrange stability, 30
LaSalle-Yoshizawa theorem, 35
Leading principle submatrix, 17
Least squares, 76–83
Line search, 96
Linear quadratic regulator, 267
Linear time-invariant systems, 43–44
Linguistic variable, 61
Lipschitz continuity, 21
Local, 25, 26
Lyapunov candidates, 140–141
Lyapunov function, 31
Lyapunov matrix equation, 43, 172, 447
Lyapunov stability, 26
direct method, 31–38
Lyapunov-like function, 36
M-link robot, 175
M-matrix, 519
Magnetic levitation, 177
Manifold, 147
Matching conditions, 162, 215, 236
Matrix
Hessian, 98
Hurwitz, 142
Jacobian, 22, 320
leading principle submatrix, 17
lower triangular, 151
skew-symmetric, 243
Matrix inversion lemma, 82
McCulloch-Pitts, 110
Mean value theorem, 22
Membership function, 62
Minimum phase, 152
Minkowski inequality, 20
Monotone function, 32
Motor control
field-controlled DC, 177
induction, 176
stepper, 256
three-phase, 212, 362
Multi-input systems, 158
Multilayer perceptron, 57
Negative definite, 33
Negative semidefinite, 33
Neural network, 50–60
multilayer perceptron, 57
radial basis, 58
tapped delay, 59
universal approximator, 110, 111, 118
Neuron input mapping, 52
Nonlinear damping, 159–163, 311, 513
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear parameterization</td>
<td>206-208</td>
</tr>
<tr>
<td>Norm</td>
<td>13</td>
</tr>
<tr>
<td>Euclidean</td>
<td>14</td>
</tr>
<tr>
<td>induced</td>
<td>16</td>
</tr>
<tr>
<td>matrix</td>
<td>15</td>
</tr>
<tr>
<td>vector</td>
<td>14</td>
</tr>
<tr>
<td>Normalized gradient approach</td>
<td>273</td>
</tr>
<tr>
<td>Normalized update law</td>
<td>461</td>
</tr>
<tr>
<td>Observability</td>
<td>317</td>
</tr>
<tr>
<td>Observer</td>
<td>311, 318, 471</td>
</tr>
<tr>
<td>On-line function approximation</td>
<td>501</td>
</tr>
<tr>
<td>Optimization</td>
<td></td>
</tr>
<tr>
<td>conjugate gradient</td>
<td>97-101</td>
</tr>
<tr>
<td>constrained</td>
<td>94</td>
</tr>
<tr>
<td>cost function</td>
<td>74</td>
</tr>
<tr>
<td>gradient</td>
<td>85-94</td>
</tr>
<tr>
<td>least squares</td>
<td>76-83</td>
</tr>
<tr>
<td>line search</td>
<td>96</td>
</tr>
<tr>
<td>steepest descent</td>
<td>98</td>
</tr>
<tr>
<td>Output-feedback systems</td>
<td>310</td>
</tr>
<tr>
<td>Parameter error</td>
<td>93, 127</td>
</tr>
<tr>
<td>Passivity</td>
<td>511</td>
</tr>
<tr>
<td>Peaking phenomenon</td>
<td>325</td>
</tr>
<tr>
<td>Performance improvement</td>
<td>203-206</td>
</tr>
<tr>
<td>Persistency of excitation</td>
<td>203</td>
</tr>
<tr>
<td>Phase margin</td>
<td>3</td>
</tr>
<tr>
<td>Physically motivated approach</td>
<td>194</td>
</tr>
<tr>
<td>Piecewise continuous</td>
<td>21</td>
</tr>
<tr>
<td>Piecewise linear function</td>
<td>113</td>
</tr>
<tr>
<td>Planner design</td>
<td>505</td>
</tr>
<tr>
<td>Planning system</td>
<td>504-506</td>
</tr>
<tr>
<td>Pole placement</td>
<td>513</td>
</tr>
<tr>
<td>Polynomial function</td>
<td>116</td>
</tr>
<tr>
<td>Positive definite</td>
<td>33</td>
</tr>
<tr>
<td>leading principle submatrix</td>
<td>17</td>
</tr>
<tr>
<td>Positive semidefinite</td>
<td>33</td>
</tr>
<tr>
<td>Practical internal model</td>
<td>308, 353</td>
</tr>
<tr>
<td>Practical stabilization</td>
<td>346</td>
</tr>
<tr>
<td>Projection algorithm</td>
<td>94</td>
</tr>
<tr>
<td>Pure-feedback systems</td>
<td>153</td>
</tr>
<tr>
<td>Radial basis neural network</td>
<td>58</td>
</tr>
<tr>
<td>Radially unbounded function</td>
<td>34</td>
</tr>
<tr>
<td>Rate of adaptation</td>
<td>186</td>
</tr>
<tr>
<td>Rate of convergence</td>
<td>29</td>
</tr>
<tr>
<td>Rayleigh-Ritz inequality</td>
<td>18</td>
</tr>
<tr>
<td>Recursive least squares</td>
<td>80-83</td>
</tr>
<tr>
<td>Reference initialization</td>
<td>204</td>
</tr>
<tr>
<td>Regressor vector</td>
<td>273</td>
</tr>
<tr>
<td>Representation error</td>
<td>189</td>
</tr>
<tr>
<td>Robust control</td>
<td>201-203, 454</td>
</tr>
<tr>
<td>Rotational inverted pendulum</td>
<td>263</td>
</tr>
<tr>
<td>Rule base</td>
<td>61</td>
</tr>
<tr>
<td>Sampled-data system</td>
<td>437</td>
</tr>
<tr>
<td>Schwartz inequality</td>
<td>19</td>
</tr>
<tr>
<td>Separation principle</td>
<td></td>
</tr>
<tr>
<td>stabilization</td>
<td>317</td>
</tr>
<tr>
<td>tracking</td>
<td>350</td>
</tr>
<tr>
<td>Set-point regulation</td>
<td>135, 142-144</td>
</tr>
<tr>
<td>σ-modification</td>
<td>185-198</td>
</tr>
<tr>
<td>Sigmoid function</td>
<td>111</td>
</tr>
<tr>
<td>Situation assessment</td>
<td>505</td>
</tr>
<tr>
<td>Skew symmetric matrix</td>
<td>243</td>
</tr>
<tr>
<td>Sliding mode control</td>
<td>160, 211, 513</td>
</tr>
<tr>
<td>Sloshing liquid</td>
<td>272</td>
</tr>
<tr>
<td>Small gain</td>
<td>511</td>
</tr>
<tr>
<td>Sontag’s universal formula</td>
<td>172</td>
</tr>
<tr>
<td>Spacecraft control</td>
<td>222, 497</td>
</tr>
<tr>
<td>Spatial frequency</td>
<td>119</td>
</tr>
<tr>
<td>Speed control</td>
<td>176</td>
</tr>
<tr>
<td>Squashing function</td>
<td>55</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>asymptotic</td>
<td>27</td>
</tr>
<tr>
<td>domain of attraction</td>
<td>29</td>
</tr>
<tr>
<td>exponential</td>
<td>29</td>
</tr>
<tr>
<td>globally asymptotic</td>
<td>29</td>
</tr>
<tr>
<td>in the large</td>
<td>29</td>
</tr>
<tr>
<td>input-to-state</td>
<td>38-41, 152</td>
</tr>
<tr>
<td>Lagrange</td>
<td>30</td>
</tr>
<tr>
<td>Lyapunov</td>
<td>26</td>
</tr>
<tr>
<td>Lyapunov candidates</td>
<td>140-141</td>
</tr>
<tr>
<td>uniformly asymptotic</td>
<td>28</td>
</tr>
<tr>
<td>unstable</td>
<td>27</td>
</tr>
<tr>
<td>Stability margin</td>
<td>3, 201</td>
</tr>
</tbody>
</table>
Stable inverse, 139, 308
Stable manifold, 147
State estimator, see Observer
State-feedback linearizable systems, 141–149
Static uncertainties, 216–227
Steepest descent, 98
Steering mirror, 362
Step function, 107
Stepper motor, 256
Stone-Weierstrass, 116
Strict-feedback systems, 153–159
Strictly increasing function, 32
Strictly positive real, 400
Sufficiently excited, 79
Supremum, 19
Surge tank, 212, 471
Swing-up algorithm, 264
Symmetric matrix, 15

T-norm, 64
Tapped delay neural network, 59
Taylor series, 116, 131
Telescope pointing, 176
Three-phase motor, 212, 362
Threshold function, 110
Time-varying systems, 210, 211
Trace operator, 15
Tracking problem, 135, 144–149
Trapezoidal integration, 441
Triangle inequality, 14
Triangular structure, 154

Uncertainty
 dynamic, 227–236
 static, 216 227
Uniform approximation, 106
Uniform continuity, 21
Uniformly bounded, 31
Uniformly completely observable, 318
Uniformly ultimately bounded, 31, 40
Unipolar, 55

Unitary matrix, 18
Universal approximator, 106, 512
 fuzzy system, 114
 neural network, 111, 118
Unstable, 27
Variable structure control, see Sliding mode control
Vector derivatives, 102
Vertical take off and landing, 424
Weierstrass, 116
Weighted average, 53
Weighted batch least squares, 79
Weighted recursive least squares, 82, 102
World modeling, 505
Zero dynamics, 150